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Abstract 
 

The idea of random sampling a finite population has broad application in statistics. Response is recorded on a 
subset (i.e. sample) of the population with a goal of estimating the population average response.  By picking the 
members of the subset in a random manner, a statistical argument is used to draw conclusions about the 
population average based on the sample response.  The same conclusions do not follow if the subset is chosen on 
purpose.  Since the same responses will be observed in each setting, how can the inference from sampling be so 
different?  This is the ‘magic’ of sampling which may have motivated Mark Twain to say: ‘There are three kinds 
of lies: lies, damned lies, and statistics.’  There have been doubters about the validity of inference from 
probability sampling for a long time.  We illustrate using a geometric framework how the added insight attributed 
to probability sampling appears to be false.  We suggest that apart from using probability sampling as an 
approach to provide face validity for making unbiased data collection decisions, a preference should be given to 
statistical inference approaches other than probability sampling. 
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1.  Introduction 
 

A basic idea often introduced in a first discussion of statistics is simple random sampling from a finite population.  
Sampling has a long history dating from Laplace (1814) and has been developed into a systematic science 
embraced by the US census, and popularized by books such as Hansen, Hurwitz and Madow 1952, Kish 1966, 
Cochran 1977, Lohr 1999, Valliant et al. 2013)and many others.  To summarize, by selecting a simple random 
sample of subjects from a finite population and observing response on the selected subjects, the theory is that we 
can estimate the population mean.  This approach is thought to be much superior to a purposeful (or volunteer) 
sample, as discussed by Neyman (1934) with respect to Gini and Galvani’s use of a purposeful sample of the 
Italian 1921 census to predict birthrates. We examine this theory via two examples, highlighting the role played 
by the model for a subjects’ response, and the subject-response link.  The first example illustrates the practical 
importance of the problem and raises a doubt as to whether or not sampling is up to the task.  The second example 
illustrates the problem in a simple geometric setting, showing that probability sampling appears to provide no 
more insight than purposeful sampling.  These examples are followed by a critical summary of several arguments 
that claim to show the superiority of probability sampling. 
 

2.  Example 1:  Complication Rate for Cateterizations 
 

Fifty patients ( 50N  ) enrolled in a group practice are considered by physicians to be ‘good candidates’ for a 
new catheterization procedure.  The new procedure is thought to have low risk of complication (measured as 
presence/absence of one or more complication for a patient), with the risk varying from patient to patient. The 
patients are listed, and forty five patients ( 45n  ) are selected at random from the listing for the new procedure.  
After performing a catheterization on the selected patients, a complication occurred for only one patient, yielding
ˆ 1/ 45p  , or a sample complication rate of 2.2%.  Based on sampling, this is the estimated complication rate in 

the population, and could be used to estimate the probability of a complication among the remaining patients.  
When each patient has his own risk of complication, the complication rate in the population is in fact the mean of 
the risk of complication overall patients. One physician argues that the results of the 45 patients do not help in 
estimating response for the remaining five patients.   
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She argues that since the five patients may have different risks of complication, while the sample response does 
estimate the overall mean risk for the 45 patients, it doesn’t predict the probability of a complication among the 
remaining patients. We return to this example later, and discuss the role that probability sampling has in drawing 
such a conclusion.  
 

3.  Example 2:  A Population With 3N   and A Sample Of 2n   
 

We consider a simple example to illustrate inference from probability sampling. Let a population of 3N   
households (HH),  , ,P Daisy Lily Rose      , be listed using the name of the HH head in Table 1. Our goal is to 
estimate the average # of HH members per household in the population.   
 

Table 1: Listing of Head of Household in the Sample Frame for 3N   Households (HH) 
 

 Head of Household   # of HH Members y  
  Rose     ? 
  Lily     ? 
  Daisy     ?  

 

We plan to do so by selecting a simple random sample (without replacement) of 2n  households, and recording 
the # of HH members, y , in each household.  These numbers are the values of two random variables, 1Y and 2Y .  

Each is a function of the households in the set, P  , i.e.  Daisy Daisy Daisyf y    where Daisyy   is the number 

of HH members in 'Daisy s  household. We assume that the # of HH members is not known in advance, and can 

be observed without error.  Our estimate is given by the sample mean,  1 2
1
2

Y Y Y   , where iY  , 1,..., 2i n 

, is the number observed for aHH in the sample set. 
 

This is a simple problem where probability sampling may be used.  Consider what can be learned about the 

population mean, 
1 y
N 






  , i.e.,  1
3 Rose Lily Daisyy y y    , via probability sampling when we randomly 

select 2n  HHs and observe the # of HH members for each.  We illustrate the possible sample sets, d , 
1,...,d D ,in Figure 1, using terminology introduced by Birnbaum (1962), where evidence, i.e. the # of HH 

members, could potentially be collected from different possible experiments. Figure 1 separates the 1st step in 
sampling, choosing a sample set (above the horizontal dashed line), from the 2nd step, observing the random 
variables for the HHs in the set. 
 

 
 

Birnbaum (1962) concluded that when considering a group of possible experiments to conduct, we only learn 
from the experiment conducted.  In Figure 1, each sample set corresponds to a particular experiment, with mean 

given by 
1

d

d y
n 






  .  Although simple random sampling associates an equal probability, 1/3, with each of 

the possible experiments, while purposeful sampling assigns all the probability toa single sample set, Birnbaum 
claim’s that nothing is learned by knowing (or specifying) the probabilities associated with the experiments.   
 
 

Figure 1.  Possible Experiments (Sample Sets)

Experiments

 1 ,Lily Rose    3 ,Daisy Rose   2 ,Lily Daisy  

Evidence Evidence Evidence
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What is learned, i.e. the evidence, comes from observing the values of the random variables from the sample set, 
which corresponds to the ‘sample space’.  If 2  is the set of HHs where response is observed, the responses 
provide evidence only for HHs in 2 .There is no additional insight gained for HH in P  , but not in the sample 
set observed.   An illustration of this is given in Figure 2, where the evidence for the sample set, 2 , is 
diagramed relative to a 3-dimensional parameter space for the population, and the sample space for 2 . 
 

 
 

The sample space is the 1 2Y Y   plane; this is where the evidence occurs.  We index the first random variable by 

1i  , i.e. 1Y  , and the second by 2i  , i.e. 2Y .  The two points in Figure 2 corresponding to  1 2Y Y Y are 

given by  Lily Daisyy y or  Daisy Lilyy y  .  The order of the random variables is not important, but the index 
distinguishes response for one HH from another.   
 
Figure 2 can help guide interpretation of Y  by focusing on the interpretation of the expected value of iY , 

1,...,i n .  The expected value of a random variable is  
s

s sE Y y





  , where s  represents the probability 

assigned to the HH s  , 0 1s  , and 1
s

s





 .  The key to interpreting  E Y  is determining whether 

we should consider iY , 1,...,i n , to be an element of P  or an element of d .  In Figure 2, the random 
variable 1Y  (or 2Y ) represents a random variable for HHs in 2 .  The fact that 1Y  cannot be interpreted as the 
number of HH members for 'Rose s  HH implies that once the experiment is selected, probabilities associated 

with HHs in P  no longer apply.  Assuming 
1
n  for d ,  

s d

d i s sE Y y





  for 1,..., 2i n  is d , 

so that when the sample space is defined by 2 ,  E Y  is given by  2 2E Y  .  The conclusion that 

 PE Y   for iY  defined over d  is most likely false since some of the HH in P  are not in d . 
 
 
 
 

Figure 2.  The Reality of Sampling

Sample Sets

Evidence Evidence Evidence

1Y

3Y

2Y

 1 ,Lily Rose    2 ,Lily Daisy    3 ,Daisy Rose  
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4. Re-Examining Sampling in Example 1 
 

In Example 1, we learn that one complication resulted from performing a new catheterization procedure on a 
simple random sample of 45n   patients selected from a population of 50N   patients.   One physician argued 
that since the probability of a complication is likely to differ from patient to patient, the results do not shed light 
on the chance of complication among the five remaining patients.  We use the ideas in Section 3 to discuss why 
based on probability sampling, this conclusion appears to be correct.   
 

First, we note that there are 
50

1,..., 2,118,760
45

N
d D

n
 

    
 possible distinct sets of 45n   patients that 

could be formed from the 50N   patients in the population.  The sample space represented by 1 2Y Y in Figure 2 
corresponds to a 45-dimensional space, 1 2 45Y Y Y   , for each sample set, d , and will contain 45! points.  
The remaining space (corresponding to 3Y   in Figure 2) is a 5-dimensional space, 46 47 50Y Y Y   ,  that is 
perpendicular (orthogonal) to the sample space.  Only one of the 1,...,d D  sets is selected, with response, i.e. 

iY , 1,..., 45i n  ,  observed on patients in the selected set, i.e. d .  Response is not observed on the 
remaining patients.  Since the remaining patients are not members of the sample set, there is zero probability that 
an observed response,  f  for d , is the response for a remaining subject, *

P  , where *
d  .  

Thus, nothing is learned about response for the remaining five patients. 
 

5.  Why Sampling Appears to Work 
 

Several arguments can be made as to why probability sampling may appear to work.  Each alters in some way the 
subject-response link that defines a random variable as a function of an element of a set (Table 2).  We discuss 
each of these arguments/theories that appear to show that the sample mean is an unbiased estimator of the 
population mean, and identify what we consider to be problems in each.  
 

Table 2: Frameworks for Inference Relative to the Subject-Response Link 
 

  Subject-Response Link Preserved 
  Yes No 
Population Sampling Reality A 

Superpopulation Sampling   B 
Model Based Approaches (with Response Error)   C 
Bayesian Models   D 

 

The framework in Table 2 summarizes different possible basic assumptions that accompany each argument.  The 
cell labeled “Reality” corresponds to an assumption that there is a subject-response link for each subject in the 
population.   For the example of households considered in Section 3, this assumption corresponds to representing 
a population  , ,P Daisy Lily Rose       via the set of pairs,  ,Daisy Daisyy , ,Lily Lilyy , and  ,Rose Rosey . The 
elements in a pair correspond to the household label, and the number of members in the household with that label.  
There is a link between these values that corresponds to reality.  The cell identified by A in Table 2 does not 
require this subject-response link, and could include pairs such as  ,Daisy Lilyy , where the household label and 
response label are not linked.  The cell identified by B not only does not require a subject-response link, but can 
also include households in a super population that are not necessarily members of P  .  Finally, the model based 
approaches and Bayesian models, cells C and D, do not typically consider data as being labeled, with response 
associated with a unique label.  
 

5.1Ignoring the Subject-Response Link (Table 2, Cell A) 
 

The first way that probability sampling may appear to work is by ignoring the subject-response link, so that more 
points appear to be included in the sample space.  To see how this occurs, consider the way that the parameters for 
HHs in P can be represented in a parameter space, where 11Rosey   , 5Lilyy  , and 2Daisyy  .   
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The points in Figure 3 on the left correspond to the population parameter when plotted with the HHs assigned to 

different axes in all possible ways. For each of these points, the population mean, 
1

1 N

i
i

Y
N




    is identical.  

Notice that HH, i.e. subjects, are dropped in Figure 3. 
 

The projection of each point onto the sample space formed by the 1 2Y Y  plane is illustrated in Figure 3 on the 
upper right.  By assuming the HHs have same chance of being associated with any axis on the left, each of the six 
points on the right is equally likely.  Using these probabilities, the expected response is equal to the population 

mean,  iE Y  for 1,..., 2i n   , and 
1

1 n

i
i

Y Y
n 

   is an unbiased estimator of the population mean. 

 
The flaw in this argument is that by dropping the HH from the diagram, the sample set is masked in the sample 
space.  Knowing the sample set where response is to be observed, i.e. by picking a sample, a positive probability 
is associated with only two possible points.   Other points have zero probability of occurring.  The axis for Y  in 
the lower right of Figure 3 plots dy   for the three possible sample sets.  Let Y  represent a random variable, i.e.

 d d dg y    , for a set in  ; 1,...,d d D    . Assuming each set is equally likely,  E Y   .  

However, when (i.e. given) the set d  corresponds to the sample set, dy is constant given by the parameter d .  

The fact that probability sampling identifies the set d  where evidence accrues limits interpretation of Y  to the 
sample set. 
 

5.2. Adding Artificial Response to form a Super population (Table 2, Cell B) 
 

A different argument supporting probability sampling can be made by adding artificial response to form a super 
population (Table 2, cell B).  First, let us represent the population via the set of pairs,  y  given by 

      *
0 11 , 5 , 2Rose Lily Daisy    , as in Cassel et al. (1977).  The members of *

0  retain the link 

between a HH, , and the # of HH members,  y f  .We refer to a larger set of (subject, response) pairs given 

by   * * ; 1,...,
q

y q Q   as a super population.  The super population is formed by adding pairs  *y  

as if any response could occur for each subject, such that  
 

     
     
     

*

 11 ,  5 , 2 ,

  11 ,  5 ,  2 ,

11 , 5 , 2

Rose Rose Rose

Lily Lily Lily

Daisy Daisy Daisy

  

  

  

 
     
 
  

. 

Figure 3.  Population Parameter Space and Sample Space Ignoring Labels

1Y

2Y

3Y

1Y

2Y

3Y

Population Parameter Space 
N=3

Sample Space (n=2)

1

2

3

Y
Y
Y

 
 
 
  

1

2

Y
Y
 
 
 
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The argument for adding such pairs is that when the # of HH members for a HH is unknown, any HH could have 
any of the possible # of HH members that occur in the population. Since 11Rosey  , the pairs  5Rose  and 

 2Rose  are artificial since Rose’s HH does not have 5 or 2 HH members.  Notice that * *
0  .  

 

Probability sampling associates a probability with each subset d , 1,..., 3d D  .  Suppose the sample is 

 1 ,Lily Rose   , and define *
d   as a subset of *   where d , such that  

 

     
     

*
1

 11 ,  5 , 2 ,

  11 ,  5 ,  2
Rose Rose Rose

Lily Lily Lily

  

  

     
  

. 

 

Since *
d  includes only the pairs  y  for sample HH (where d ), we drop the HH labels,   , and focus 

on the set of # HH members,     * * * *| 2,5,11dy y y     .  This set is the starting point for ‘model 

based’ inference (Valliant, et al 2000).   The probability associated with the set d  is not relevant, since *
d  is 

defined conditional on d . Let the random variable *
iY , 1,..., 2i n  correspond to the value of *y   

observed for the sample HHs.  Assigning equal probabilities to the elements of  * | 1,..., 3sy s N    , 

 * *

1

1N

i s
s

E Y y
N



  so that  *
iE Y    for 1,...,i n , and 

2
*

1

1
2 i

i
E Y 



 
 

 
 .  By adding artificial response, 

even after conditioning on the HHs in the sample, d , sampling appears to work. The super population approach 
is appealing since it is conditional on the sample HHs.  Response is represented by an element of  ,  which 
includes response for all HHs in the population.  The problem with the logic behind these arguments is the 
assumption that positive probabilities are assigned to pairs  *y where  *y y f   .  This assumption 

violates the connection between theory and reality, since positive probabilities are assigned to pairs  *y that 
do not in reality exist.   
 

5.3. Interpreting Response via Model Based Approaches (Table 2, Cell C) 
 

A model based framework may be specified for settings where probability sampling is used, and may appear to 
justify the probability sampling inference (Table 2, cell C).  A simple model based framework consists of ‘random 
generator’ that produces the value of a random variable, Y , with repetitions independent and typically identically 
distributed.  In the long run, the expected value of  Y  is equal to  , which we represent via the response error 
model, Y   .  The ‘random generator’ produces response while at the same time ignores HH labels.  There 
are no ‘subjects’ in the model-based framework, and hence no subject-response links. As an example, the random-
generator could consist of independent selections of a response from , where an equal probability is assigned to 
each possible response.  Sampling without replacement of 2n  can be mimicked by assigning equal 
probabilities to all possible pairs of response.  Since  E Y   , the sample mean is an unbiased estimator of 
.  This framework is very similar to the probability sampling problem, and so it is tempting to assume that the 
same conclusions apply.  However, the model is defined for response without any connection to HHs. 
 

One way to relate a response Y  to a HH is to assume that the response error model holds for each HH.  With this 
assumption, the expected # of HH members in each HH is the same, and Y   is ‘response error’.  The flaw in 
the model is that usually the model is false.  Households have different household sizes.  An assumption that all 
HH have the same size doesn’t match reality.  However, in such a model perspective, the HHs are not relevant, 
and the model-based mean,  , can be interpreted as the mean of any population the analyst suggests. The 
response-error model argument may appear more plausible for Example 1, where the internal working of the 
generator is to repeatedly toss a biased coin, with the probability of “complication” equal to  .   
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All possible tosses of the coin form the theoretical ‘population’.  By running the generator 45 times, inference is 
made about   for the ‘random generator’ in a theoretical world (Kass (2011)).  Using this logic, we could 
assume the 45 runs of the ‘random generator’ are the results for 45 sample patients, and  that 5 more ‘runs’ would 
produce the results for the remaining five patients. Alternatively, we could assume the 45 runs of the ‘random 
generator’ are the results of 45 procedures on a single patient.  The only connection of the model to the real 
problem is the assumption that responses for the model are like responses for a real problem.  Inference occurs in 
the theoretical world. 
 

5.4Bayesian Models (Table 2, Cell D) 
 

We briefly mention a Bayesian framework for inference, not because it is used to justify probability sampling, but 
rather to note that with such models, the subject-response link is typically not preserved.  The prior distribution, 
which is often an exchangeable distribution, does not identify subjects and their response.  Although in the data, a 
subject-response link can be recognized, the linking is rarely used to update the prior distribution since it isn’t 
captured as part of the prior.  By conditioning on the data, the Bayesian framework explicitly adopts Birnbaum’s 
advice, and does not support a conclusion that probability sampling works. 
 

6. Discussion 
 

How has the problem with sampling escaped the scrutiny of researchers?  There is evidence that it has not been so 
lucky.  Fisher (1956, p33), in discussing use of relative frequency as a measure of probability noted that “it is 
essential that the sequence of events contains no recognizable subsets, it must be ‘subjectively homogeneous and 
without recognizable stratification’”.  This comment can be seen to distinguish the use of probability in finite 
population sampling and model based frameworks and was noted by Holt and Smith (1979), who recognized 
similar difficulties with probability sampling.  In finite population sampling, the labels create recognizable 
subsets, limiting the inference to the subjects observed.  If the subjects in the population are distinguishable, then 
unless all the subjects have the same response (or the same expected response), connecting probability to response 
without breaking the subject-response bond limits inference from sampling. Since in human and biological 
population, the expected response nearly always differs for different subjects, for such applications, whether a 
sample set was obtained via probability sampling or purposeful sampling does not change the evidence 
contributed by observing response on the sample set. Arguments that support inference from probability sampling 
are misleading, usually because they break the subject-response link, or creation of a false reality. By ignoring the 
subject-response link, a single population parameter can be represented as illusionary cloud of points in a 
parameter space (Figure 3).  Projecting these points onto a sample space, and associating a positive probability 
with each point makes it seem that there is added benefit to probability sampling.   
 

Since the subject labels are not traced, it is not possible to distinguish which points represent response for sample 
subjects, and other points whose assigned probability conditional on the sample should be zero. Others, such as 
Godambe (1955) have challenged the logical basis of inference from probability sampling.  Appreciation of these 
challenges led directly to a crises in statistics in the 1970s (Johnson and Smith, 1969, Cassel, Särndal, and 
Wretman (1977)).  This has led to other approaches such as super population models.  While seeking to justify 
conditioning on the sample set, super population models appear to create artificial responses.  Alternative model-
based approaches seek solutions in a theoretical framework, avoiding a formal connection to reality apart from 
connection by analogy. There is pressure to use inference based on probability sampling even in light of these 
problems.  Sampling provides the theory behind sample surveys which are an established tool used by social 
scientists and governments to understand reality.  Sampling theory is the foundation for a randomization based 
analysis of experimental design (Scheffé 1959, Kempthorne 1952), and underlies approaches for understanding 
missing data (Rubin 1976).  Clinical trials have randomization and sampling theory at their core (Feinberg and 
Tanner 1996).  Perhaps most importantly, generations of scientists have been trained in the distinction between 
inference from observational and experimental (sampling based) studies.  Since probability sampling promises 
unbiased methods for answering questions that can be interpreted as extending beyond the data, the approach is 
compelling. The problems with inference based on probability sampling result in the same limitation faced by 
purposeful sampling: observing response on some subjects does not tell you the response on those who remain.  
An important advantage of a sampling framework is the clear definition of a problem in terms of identifiable 
subjects and the subject’s response.   
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This advantage facilitates describing similarities and differences between subject with similar response, form 
groups of subjects with homogenous response, and develop hypotheses and theories as to why responses are 
different.  A clear problem definition makes it easier to identify settings where not enough data are available to 
understand response differences, and accelerate the data collection-understanding process of science.  Probability 
sampling has contributed to focused attention on a clear problem definition. Randomization and probability 
sampling has also contributed as a strategy for face validity of results that uncouples potential investigator bias or 
prejudices from the results. By reducing the focus on inference from probability sampling theory, the frequentist-
Bayesian split in statistics dissipates.  The impact may help shift the focus of statistics from comparison of 
population averages to understanding reasons for differences between subject’s response, or predicting a subject’s 
response.  Such a shift will strengthen the paradigm of observation, inference, critical thinking, and then more 
observation, that is the original hallmark of science. 
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