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Abstract 
 

 We apply the general operator – valued functional calculus to the joint functional calculus of  two sectorial  operators . We give the 
optimal order of smoothness in the Mihlin and Ḧ݋rmander conditions for operator – valued Fourier multiplier theorems . We give an 
extended estimate  that  shows  the integral converges to a Bachner integral. More generally we also extended a series of ܪ∞-sectorial 
operators has an ܮ௣ maximal regularity. 
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Introduction 
 

The notion of an H    calculus for sectorial  operators on a Banach space has played an important role in spectral theory for 
unbounded operators and its applications to differential operators and evolution equations. We recall that a sectorial operator of type 
0     satisfies a parabolic estimate of type 

 

 , argR A C                                                           (1) 

for every     . This estimate allows a definition of  f A  as a bounded operator for functions f  which are bounded and 

analytic on the sector  : arg


     and which obey a condition of the type    21f C  
   

 
 for 

some 0.   
If we have an estimate    Hf A C f


    

it is possible to extend the definition of  f A  to any  f H


   and we say that f  has an  H


  - calculus. It is 

well known that many systems of parabolic differential operators do have an H   calculus. 
 
Of particular importance are two closely related problems: 
 
The maximal pL  regularity of the Cauchy problem  

       , 0 0y t Ay t f t y     

for a  sectorial operator of type 2   

-The question whether the sum A B  with domain    D A D B  of two sectorial operators is closed. 
 

In fact the first problem can be reduced to the second, and the latter problem is essentially the question whether one can construct a 
bounded operator  B A B . This then is a special case of the problem of constructing a joint functional calculus of  ,A B . In the 
case of Hilbert spaces and some related situations it was shown that one can construct an operator-valued functional calculus associated 
to an operator with H   calculus and this permits a solution; however, it was also shown that such an approach cannot work in 
general Banach spaces and additional conditions are therefore needed. 
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We described a method of setting up the joint functional calculus of n  sectorial operators and an operator-valued extension. We recall 
the notion of  Rademacher-boundedness ( R  boundedness) of families of operators. This implicitly goes in connection with vector-
valued multiplier theorems. We also introduce some weaker notions and study their relationship to certain Banach space properties of 
the underlying space. 
 

We prove a very general result on the existence of an operator-valued functional calculus for operators with an H   calculus. This 
permits us to replace boundedness of the range of the function by Rademacher-bounded ( or even the weaker concept of U-
boundedness). 
 

We study the relationship between R-boundedness and the functional calculus for general sectorial operators of particular importance is 
the notion of R-sectoriality when the boundedness condition (1) is replaced by an R-boundedness condition. 
 

We show that if ,A B  are sectorial operators such that A  has an H


  
 
 
   -calculus and B  is R- sectorial of type    when 

     then A B  (with domain    D A D B ) is closed. 
 
One advantage of this result is that it is easier to check R-sectoriality than the boundedness of imaginary powers. 
 

We give applications to the joint H   functional calculus and show how Banach space properties such as UMD, analytic UMD and 
property    of  Pisier  relate to the results. 
 

H   calculus really induces an unconditional expansion of the identity of the underlying Banach space. 
 

We use this observation to show how classical results on unconditional bases can be recast as results on operators with H   calculus 
on 1L  and  C k  spaces, but they are in practice very few examples of such operators of this type. 
 

Here we sketch a method of setting up an operator-valued functional calculus for finite collections of sectorial operators. 
 

Let us first introduce some notion. Suppose  0    . Then we denote by 
  the sector  : arg , 0z z   and by   

the contour   sgn :i tt e t     . We denote by  H


   the space  of all bounded analytic functions on 
 . We 

define  0H


   to be the subspace of all  f H


   which obey an estimate of the form 

    21f z c z z


   with 0 . Let us extend this to dimension m. In m�  if  1,..., m     where 0 k     

we define 1
k

m
k  

    and 1 k

m
k      . If , mv �  we write v  if k kv   for 1 k m  . We denote by 

 H 
  to be the space of all bounded analytic functions on 

 .We define  H 
  to be the subspace of all 

 f H 


   which obey an estimate of the form     2
1 1m

k k kf z C z z


   with 0   where 

 1,..., mz z z . 
 

We introduce some corresponding vector valued spaces. Now suppose X  is a Banach space and A  is sub-algebra of  L X , 

which is closed for the strong-operator topology. If  1,..., m     as above, we define  ;H A
  the space of all bounded 

functions :F A

 , so that for every x X the map  z F z x  is analytic ( i.e., F  is analytic for some strong-operator 

topology. We consider the scalar space  H


   as a subspace of   ,H A


   via the identification  f f I .  
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We shall say that nF  converges boundedly to F  in  ,H A


   if  sup supn nz F z



   and 

   nF z x A z x  for every z


 , and x X . We define  0 ;H A


   the subspace of all  ;F H A


   

which obey an estimate of the form     2

1
1m

k kk
F z C z z




   with 0   where  1,..., mz z z . 

 

We next consider the space of germs of such functions. Fix 0 k    for 1 k m  . We consider the space 

   , ;wH A H A 
 

   where  ,F G  are identified if there exists    will    F z G z  for all 

z


 .  ,H A  is then an algebra. In   ,H A  we define a notion of sequential convergence   by nF F  if there 

exists    so that each  , ;nF F H A


   ,  sup supn z F z


   and    nF z x F z x  for all 

z


  and all x X . 
 

Recall that a closed densely defined operator A  on a Banach space X  is a sectorial operator of type  0 A      if A  is 

one-one with dense range, the resolvent  ,R A  is defined and bounded for ire    where 0r   and      and 

satisfies an estimate  ,R A C    for     . 
 

Suppose  1,.., mA A  is a family of sectorial operators where kA  is of type k  for 1 k m   , and let  1,..., m   . Define 

the resolvent for arg   by    1 1
, ,..., ,m

m k kk
R A A R A 


  . Let A  be the closed sub-algebra of  XL  of all 

operators T  so that T  commutes with  , kR A  for every k   and every   with arg k  .  
 

If  ,F H A  is of the form    1

kp Sm
k kk

F z z



   where  0kp �   and S A  we define 

   1 1
,..., , km p S

m k kk
F A A R A


  and then this definition can be extended by linearity to the linear span of such functions, 

which we call the rational functions,  denoted    ,R A , in  ,H A . 
 

To  extend  this definition further we use the following device. Consider the algebra of all   1, ,..., mF F A A  for  ,F R A  

as a subset of  ,H A A  . Denote by *  the sequential convergence    , ,n nF T F T  if  nF F   and nT T  in 

the strong-operator topology. Let B  be the *  closure of this set (i.e. the smallest set which is closed under sequential convergence 
and contains it). Notice that this construction might involve taking infinitely many  iterations of sequential limits, but our construction 
actually shows that two iterations suffice. It is clear that B  is an  algebra. Our next task is to show that if  ,F H A  there is at 

most one choice of T A  so that  ,F T B , this will enable us to define  1,..., mF A A  unambiguously. 
Consider the function on C  

  1
1n

nz
n z nz

  
 

                                                                      (2) 
 

and then define on mC ,    1

m
n n kk

z z 


  so that  0n H


    for every 0  . Then  

   1
1

1 1,..., , ,
m

n m k k n
k

A A R A nR n A V
n n




          
  is an approximate identity in the sense that sup nV    and 

nV x x  for every x X  if  ,F H A  then if  ,F H A


   we can define  
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       1
1 , ,...,

2 v
n n mL F x F R A A xd

i
    

 

   
   ,                          (3) 

 

as long as v   . ( This is multiple contour integral). An application of Cauchy's Theorem shows that nL  is independent of the 

choice of v . By the Lebesgue Dominated convergence Theorem  : ,nL H A A   is    continuous if A  is equipped with 
the strong-operator topology. 
 

If F  is rational then we have by a standard contour integration, 
   1,...,n m nL F x F A A V x x X                                                    (4) 

Now the map    , nF T L F T   is continuous for *  and the strong-operator topology. We conclude that if  ,F T B , 

 n nL F x TV x x X  . 
 

Since nV x x  for all x X , this shows that T  is uniquely determined by F . Hence we can define  1,..., ;mH A A A  to be 

the set of  ,F H A  such that for some T  we have  ,F T B  and then we can define  1,..., mT F A A  for 

 1,..., ;mF H A A A . The space  1,..., ;mH A A A  is an algebra and  1,..., mF F A A  is an algebra homomorphism.  
 

For    1,..., ; ;mF H A A A H A


   and v    then (3) and (4) can be written as : 
 

     1 1
1,..., , ,...,

2
v

m

m n n mF A A V x R A A xd
i

   
 

   
                            (5) 

 

If  0 ,F H A


   then the integral in (5) converges as n  . We can show by approximating the integral by Riemann 

sums that  1,..., ;mF H A A A  and then we have: 
 

     1 1
1,..., , ,...,

2
v

m

m mF H A A x F R A A xd
i

  
 

    
                       (6) 

 
It now follows that if  ,F H A  then    1,..., ;k mF H A A A   for each k N . Furthermore if  nF F   we 

have   1,...,k n mF A A     1,...,k mF A A  in the strong-operator topology for each fixed k . From this it follows that if 

 1,..., ;n mF H A A A  and  1sup ,...,n mF A A    then  1,..., mF H A A  and 

   1 1,..., ,...,n m mF A A F A A  in the strong-operator topology ( we have convergence on each nV x  ). In particular it follows 

that  1,..., ;mF H A A A  if and only if   1sup ,...,n n mF A A   . 
 

If we consider the scalar functions in    1 1,..., ,..., ;m mH A A H A A A  then we have defined the joint functional calculus for 

 1,.., mA A . We recall that a single operator A  has an  H


   - Calculus if    H H A


  . The collection 

 1,.., mA A  has a joint  H


  -calculus if    1,..., mH H A A


  . 
 

We recall that a family F  of bounded operators on a Banach space X  is called Rademacher-bounded or R-bounded with R-
boundedness constant C  if letting   1k k

 


 be a sequence of independent Rademachers on some probability space then for every 

1,..., nx x X  and 1,..., nT T F  we have: 
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 
1

2 12
2 2

1

n

k k k k k
k

E T x C E x 


 
  

 
                                        (7) 

It is important to note that this definition and the associated constant C  are unchanged if we require 1,..., nT T  to be distinct in (7). 
 

We will introduce two related weak notions. Let that F  is weakly Rademacher-bounded or WR-bounded with WR-boundedness 
constant C  if for every 1,..., nx x X , * * *

1 ,..., nx x X  and 1,..., nT T F  we have  
1 1

2 22 2
* *

1 1 1

,
n n n

k k k k k k k
k k k

T x x CE x E x 
  

   
       

   
                         (8) 

Finally we say that F  is unconditionally bounded or U-bounded with U-boundedness constant C  if for every 1,..., nx x X , 
* * *
1 ,..., nx x X  and 1,..., nT T F  we have  

* *

1 11 1 1
, max max

k k

n n n

k k k k k k k
k k k

T x x x x
 

 
 

  

                               (9) 

 

Lemma (1.1)[3][1]:  
 

Let F  be a subset of  L X . Then for F , R-bounded WR-bounded  U-bounded. If X  has nontrivial Rademacher type 
then WR-bounded  R-bounded. 
 

The last sentence is the non-trivial part of the lemma and this follows easily from Pisier's characterization of spaces with non-trivial type 
as those in which the Rademacher projection is bounded. 
 

We shall also need some related Banach space concepts. Suppose   1k k
 


 and   1k k

 


 are two mutually independent sequences of 

Rademachers. We say that X  has property ( ) if  there is a constant C  so that for any  
, 1

n

jk j k
x X


  and for any

  , 1

n
ik j k C


   we have  

1/2 1/22 2

,
1 1 1 1

max x

n n n n
C

jk j k jk j k jk j k jk
j k j k

E x E x     
   

   
   
   
   
                        (10) 

 

We say that X has property  A  if there is a constant C  such that for any  , , 1

n

j k j k
x X


  and for any  

, 1

n

jk j k
x X 


  we 

have 
1 1

2 22 2
* *

1 1 1 1
,

n n n n

jk jk j k jk j k jk
j k j k

x x C E x E x   
   

   
   
   
   

              (11) 

 

Clearly    (A) and the converse holds if X  has nontrivial Rademachers type; this is a fairly simple deduction from the 

boundedness of the Rademacher projection. Any subspace of a Banach Lattice with nontrivial co type has property    while any 

Banach lattice has property (A). It is also observed that 1 1L H  has   . The Schatten ideals pC  when 1 p    and 2p   
fail to have (A). 
 

We shall say that X  has property   if there is a constant C so that for any  , , 1

n

j k j k
x X


  
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1 1
2 22 2

1 1 1 1

jn n n

j k jk j k jk
j k j k

E x C E x   
   

   
   
   
   

                       (12) 

 
It is clear that    is a weaker property than   . It is in fact shared by all spaces with (UMD) and even analytic UMD. We recall 

that X  has analytic UMD  if every 1L –bounded analytic martingale has unconditional martingale differences. 
 

Proposition (1.2)[3][4]: 
 

Suppose X  has analytic UMD. Then X  has property   . 
 

Proof:  
 

Let   1k k
 


  and   1k k

 


  be two mutually independent sequences of Steinhaus variables (i.e., each is complex-valued and uniformly 

distributed on the unit circle). By applying the unconditionality of the Rademachers and the Khintchine-Kahane inequality it is 

sufficient to show the existence of a constant C  so that for any  
, 1jk j k

x



we have  

1 1 1 1

jn n n

j k jk j k jk
j k j k

E x CE x   
   

      

 

To see this we define jf  for 1 2 1j n    by 2 1r j k jkj r k r
f x   

     and 2 1r j k jkj r k r
f x 

  
    .Let 

0 0f  . Then  jf  is an analytic martingale and so for a suitable constant C  depending only on X  we have: 

 
1

2 1 2 2 1
0

E
n

r r n
r

f f CE f


 


   

 

This yields the desired inequality. Since any space with (UMD) has analytic (UMD) this shows that (UMD) spaces have  ; actually 
a direct proof using Rademacher in place of Steinhans variables in the above argument is possible for this case. Thus the Schatten 
classes pC  have property    as long as 1 p   . However Haagerup and Pisier show that 1C  (which has co type 2) fails 

analytic UMD and their argument actually shows it fails property   . This implies that  C k -spaces of infinite dimension also fail 

   since 1C  is finitely representable in any such space . 
 

Theorem (1.3)[3]:  
 

Suppose   1k k
U 


 and   1k k

V 


 are two sequences of operators in  XL  satisfying  

1
sup sup

k
k k

n
U M





     

 

And 

1
sup sup

k
k k

n
V M





    

Suppose further  XF L  is a family of operators which is R-bounded with constant R. Then 

(i) The sequence   1k k
U 

  is R-bounded with constant M . 

(ii) If X  has property    the collection 1
: , 1,

n

k k k k k
k

U T V n N T 


 
   

 
 F

 is R-bounded with 

constant 
2CRM  where C  depends only on X . 



American International Journal of Contemporary Research                                                Vol. 5, No. 2; April 2015 
 

126 

(iii) If X  has property  A  then the family 
1

1
: , ,..., 1

n

k k k n
k

U V n N  


 
  

 


 is WR-bounded with 

constant 
2CM  where C  depends only on X . 

(iv) If X  has property    then the set 1
:

n

k k
k

U V n N


 
 

 


 is R-bounded with constant 
2CM  where 

C  depends only on X . 

Proof:  

(i) We use the remark that it is enough to establish (7) for distinct operators  1,..., nT T . If 1,..., nx x X  

and 1k    then 

1 1 1

n n n

k k k k k k k k
k k k

E U x U x   
  

   
   

   
    and hence 

  

1 22

1 1 1

sup
k

n

k k k k k
k k

U x M E X


 


  

  
       

   . 

 

This proves (i) and indeed a rather stronger result. 

)ii( Let 
1

j jk k jk k
k

S U T V




  where jkT F  and  jk  is a finitely nonzero collection of complex numbers with 

1jk   and fix 1,..., nx x X . We first note that for all 1,..., ny y Y .  
1 22

1 1 1 1

n n n n

k k k k k k k k
k k k k

U y E U y M E y  
   

    
             

     

We will also use the fact that there is a constant C  depending only on X  so that for  
, 1

n

jk j k
X


   we have from property   ,  

1 1
2 22 2

1 1 1 1

n n n n

jk j k jk jk j k jk
j k j k

E E T x CR E E x       
   

   
   
   
   

   

Hence, using 
1

n

k jk j jk k j
j

y T V x 


  in the first inequality,  

1 1
2 22 2

1 1 1

n n

j j j k jk j jk k j
j k j

E S x E U T V x  


  

   
   
   
   

    

                                   

1
2 2

1 1

n

jk j k jk k j
j k

M E E T V x    


 

 
 
 
 

  

                                  

1
2 2

1 1

n

j k k j
j k

CRM E E V x   


 

 
 
 
 

  
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1
2 2

2

1
j j

k

CRM E x 




 
   

 
  

This proves (ii). 

(i) Let 1
j jk k k

k
S U V






 where  jk

 is a finitely matrix with 
1jk 

. In this case if 1,..., nx x X  

and 
* * *
1 ,..., nx x X  we note that:  

         * * *

1 1 1

, ,
n n

j j j x j k j
j j k

S x x V x U x


  

   

                          

1 1
2 22 2

* *

1 1 1 1

1 1
2 22 2

2 *

1 1

n n

j k k j j k k j
j k j k

n n

j j j j
j j

C E E V x E E U x

CM E x E x

      

 

 

   

 

   
   
   
   

   
   
   
   

 

 
 

 
(i) We use the proof of (ii). This time we again use the fact it suffices to consider the operators without 

repetition. So we consider 1

j

j k k
k

S U V



 and repeat the proof of (ii) with 1jk   if k j  and 0  otherwise 

and replace each jkT  by the identify. Using (12) in place of (10) gives the desired conclusion. 
 

Lemma (1.4)[3]:   

Suppose 0     and   ;F H X


  L . Suppose 00 v     and for some M    and 1a  , and for each 

t R  the set   k iv

k z
F a te


 is U  bounded (respectively, WR-bounded; respectively, R-bounded) with constant bounded by 

M  ( independent of t ). Then the family   
0

:F Z z


  is U-bounded, (respectively, WR-bounded; respectively R-

bounded). 
 

Proof: We give the proof in the U-boundedness case, the others being similar. We first make the observation that it suffices to consider 
the case when 2v   as one can make the  transformation 2vz  . In this case we have the formula  
 

      11F z F it z it dt







    

We write  

      1
1

0

1F z F it z it dt



    

and  

      1
2

0

1F z F it z it dt



      

so that      1 2F z F z F z   
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Note that for a suitable constant C  we have an estimate    21 20 min ,z it C z t z    R  whenever 
0

z


 . 
 

Now suppose 1,..., nx x X  and * * *
1 ,..., nx x X . Suppose 

0
1,..., nz z


 . Let us suppose jm �  are chosen so that 

1j jm m
ja z a   . We have for 

0
z


  

 

     * *
1

1 1 0

1, ,j j
n n

m m
j j j j j j

j j
F z x x F ia t x x z ia t x





 

   R  

   * 2

1 0

, min 1,j
n

m
j j

j

ac F ia t x x t dt







   

*

1 11 1

max max
j j

n n

j j j j
j j

C x x
 

 
 

 

    

 

for a suitable constant 1C . A similar argument can be done for 2F . 
 

Let us suppose A  is sectorial of type   and   . We let A  denote the algebra of all bounded operators which commute with 
A  . 

 

Before we prove the basic estimate for an operator-valued functional calculus, we will describe in the following lemma and proposition 
the connection between the H  -calculus and unconditional expansions in the underlying  Banach space. 
 

Lemma (1.5)[3]:  
 

Suppose that A  admits an  H


   calculus, and that  0f H


  . Then there is a constant C  so that for any 

0t   and any finitely nonzero sequences  k k
�

 we have: 
 

 2 maxk
n kkk

f tA C 





�

�

 

 

Furthermore for every x X  and 0t   the series  2t

k
f tA x



�

 converges unconditionally in X .  

Proof:  We can assume max 1kk





�
. For suitable constants ,C C  and 0t   we have  

    2
22 sup 2 sup

1 2

k
k k

k kz z k

zf tA C f z CC
z 




  

 
   

  
 

�

 

and the last quantity is finite.   

For the last part observe that for any bounded sequence  k k
�

 and 0t  , the series  2k
k

k
f tA x



�

 must converge to 

 g A x  where  

     2k
k

k
g z f tz H  



  
�

. 

 

Proposition (1.6)[3]:  
 
Suppose  0 ;F H 

  A . Then for any v   , 0 1s  , and any x X , 

     1 ,
2

v

s sF A x F A R A xd
i

   







  ,  
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Proof:   First note that  ,sA R A  is a bounded operator for v  which is given by the integral  

     11, ,
2

v

s sA R A k R A xd
i

     







                    (13) 

 

If v v   . This gives an estimate   1, ss
sA R A C    and shows that the integral in (13) converges to a Buchner integral.  

 

It is clear that we only need to establish the formula if  nx A y  for some y X . To do this we compute  
 

        2
n nF A A x F A A y   

                                    2 s
n nA A F A A A y   

                            1 ,
2

v

s s
n nA A F R A yd

i
      







   

                           1 F ,
2

v

s s
n nA A R A yd

i
      







   

                           1 F ,
2

v

s s
n A R A xd

i
     







   

 

Now using the dominated convergence theorem we obtain (13). 
 

Let us rewrite (13) by using the parameterization  i sgntt e    for t    . To represent the resolvent  we often use the 
function. 
 

    1s i
sh z z e z  

                                                                (14) 

Then for  0 ;F H A
   where     ,  

          1 sgn sgn sgn1 ,
2

si s t v i t v i t vsF A x e t F t e A R t e A xdt
i






   

         
 

   
 

   
1 1

1 1

0 02 2

i s i s
iv v iv v

s s
e dt e dtF te h t A x F te h t A x

i t i t

 

 

   
       

This can be reformulated as: 

      
2

1

1
2

dtF A x M t M t
i t                                                (15)  

Where  
       1 12 2i s v k iv v k

s
k

M t e F t e h tA x     




 
�

                                  (16) 
 

Corollary (1.7)[6]: 
 
Suppose ܨ௝ ∈ (∑ ,ࣛఙ ),  is a sequence ,with ߱ < ߥ < ,ߪ 0 < ݏ <1 andݔ ∈ ܺ. 
 
Then 

෍෍ܨ௝(ܣ)
∞

௝ୀଵ

ݔ =
−1
݅ߨ2

න ෍ିߦ௦ܨ௝(ߦ)(ܣଵ௦ + ⋯+ +⋯+ଵܣ,ߦ)ܴ(ଵଶܣ ߦ݀ݔ(ଵܣ
∞

௝ୀଵΓ

∞

௝ୀଵ

 

                              = ିଵ
ଶగ௜

∑ ∑ ∫ ௄௦ܣ(ߦ)௝ܨ௦ିߦ Γഘߦ݀ݔ(௄ܣ,ߦ)ܴ
∞
௝ୀଵ

∞
௝ୀଵ  
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Proof: We have  

෍ܣ௄௦ ܮ(௄ܣ,ߣ)ܴ =
−1
݅ߨ2

෍න
Γഘ
ߣ)ଶߦ − ߦ݀ݔ(௄ܣ,ߦ)ଵܴି(ߦ

∞

௄ୀଵ

∞

௄ୀଵ

 

 
For ߱ < ′ߥ <  To find the estimate, we have .ߥ
 

อ෍ ௄௦ܣ (௄ܣ,ߣ)ܴ
∞

௄ୀଵ

อܮ =
−1
݅ߨ2

อ෍ ∫Γഘߦ
௦(ߣ − ߦ݀ݔ(௄ܣ,ߦ)ଵܴି(ߦ

∞

௄ୀଵ

อ 

Then 

෍‖ܣ௄௦ ‖(௄ܣ,ߣ)ܴ
௡

௄ୀଵ

≤  ఔିଵ|ߣ|௦ܥ

If ݔ = ∑ ߮௡(ܣ௄)ܺ߳ݕ, ݕ.∞
௄ୀଵ We 

have∑ ∑ ݔ(௄ܣ)௡߮(௄ܣ)௝ܨ =∞
௄ୀଵ

∞
௝ୀଵ

∑ ∑ ݕ(௄ܣ)௡ଶ߮(௄ܣ)௝ܨ =∞
௄ୀଵ

∞
௝ୀଵ

∑ ∑ (௄ܣ)௄ଶ߮௡ܣ ቀܨ௝(ܣ௄)ቁܣ௄ି௦߮௡(ܣ௄)ݕ = ିଵ
ଶగ௜

∑ ൫ܣ௄௦ ߮௡(ܣ௄)൯∑ ∫Γഘߦ
ି௦߮௡(ߦ)ܴ(ܣ,ߦ௄)∞

௝ୀଵ ߦ݀ݕ =∞
௄ୀଵ

∞
௝ୀଵ

∞
௄ୀଵ

ିଵ
ଶగ௜

∑ ∑ ∫Γഘߦ
ି௦߮௡(ߦ)ܨ௝(ߦ)∞

௄ୀଵ ൫ܣ௄௦ ߮௡(ܣ௄)൯ܴ(ܣ,ߦ௄)ߦ݀ݕ =∞
௝ୀଵ

ିଵ
ଶగ௜

∑ ∑ ∫Γഘߦ
ି௦߮௡(ߦ)ܨ௝(ߦ)൫ܣ௄௦ ∞ߦ݀ݔ൯(௄ܣ,ߦ)ܴ

௄ୀଵ
∞
௝ୀଵ  

 
Proposition (1.6) gives the proof. 
 

We first make an essentially trivial deduction characterizing for the H   calculus. 
 

Proposition (1.8)[3]:   
 

Suppose v   and 0 1s  . Consider the conditions: 

    1

0 1
supsup sup 2 2 ,

k

N sk s k iv
k

t N k N
t A R te A




 

  

                               (17)  

 

Then (17) is necessary for A  to admit an  H 
   calculus for some    and sufficient for A  to admit an  H 

  
calculus for every   . 
 

Proof: 
 

Necessity follows immediately from Lemma (1.5) for the functions  v
sh . Conversely by (17), if  f H 

   where v   we 
obtain by (15) and (16)  
 
  n f A C   independent of n . This implies that  f AH . 

 

The main result is also easy from (15) and (16). 
 

Theorem (1.9)[3][1][4]:  
 

Suppose A  admits an   H 
   calculus and  ;F H A

   for some   . Suppose further that the set 

  :F z z   is U-bounded. Then  ,F AH A . 
 

The theorem holds if we assume the stronger property that   :F z z   is WR-bounded or R-bounded. 
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Proof: 
 

As before we consider n nF F   so that  ,nF AH A . It suffices to show  sup nF A   . Referring to (15) and (16) with 

some fixed 0 1s   and v    for x X , * *x X  with *, 1x x   we obtain the estimate for 1 2t  : 

       ** 1 *, 2 2 , 2k iv k k
n

k
M t x x F t e g tA x g tA x  





�

 

where     
1
2v

sg z h z . Suppose C  is the U-bounded constant of   :F z z  . Then  

   
2

*

1
, sup sup 2

k

k
k

N k N
M t x x C g tA




 

  . 

 

Hence by Lemma (1.5) we have 
 sup n

n
F A    

 

Let us apply this to the case of two operators. 
 
Theorem (1.10)[3]:  
 
Suppose ,A B  are sectorial operators, such that A  admits a  H 

  -calculus and  B   . Suppose 

 f H  


    where      is such that   :f    is contained in  BH . Suppose further the set 

  , :f B    is U-bounded. Then  ,f A BH  (i.e.  ,f A B  ) is a bounded operator). 
 

Proof: 
 

We define    ,F f B   and note that  ;F   A ; this follows easily from the integral representation (4). Our conditions 

and Theorem (1.9) ensure that  ,F AH A . It is only necessary to check that this implies  ,f A BH  and of course  

   ,F A f A B . But this follows directly from (4), (5) and the remarks thereafter. 
 

Let us show by example that Theorem (1.10) is closed to the possible. Let B  be a sectorial operator on  X . Suppose 0     

and consider the space   2 1,1 ;L X  where  1,1   has the usual product measure. 
 

Denote by z  the co-ordinate maps for z  . Let  Rad X  denote the closed linear span of the functions 

 : ,z x z x X    . We define B I B   on  2L X  and restrict it to the sub-space Rad X  which is invariant. We 
define A  on  Rad X  by  

z z z z
z z

A x z x
 

 
 

 
 

 
   

with domain consisting of all 2z zx L   so that 2z zz x L  . 
 

Clearly A  has an  H 
   calculus and  ,f A B , for some  f H  


    with  B   , is bounded if and 

only if the operators  , ,f z B z  , exist in  B X  and form a R-bounded set. 
 

We now consider strengthening of the boundedness conditions in the definition of sectoriality. Let A  be a sectorial operator and let 
 A  denote the infimum of all   so that A  is of type  .  
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We will say that A  is R-sectorial, ( respectively  WR-sectorial, respectively U-sectorial) if there exists 0     so that the family 
of operators   , : argR A     is R-bounded ( respectively WR-bounded, respectively U-bounded). We then define  

 R A , ( respectively  WR A , respectively  A  to be the infimum of all such  . We will say A  is H   sectorial ( 

respectively, RH   sectorial, respectively WFH   sectorial) if there exists a 0     so that A  admits an  H 
  -

calculus ( respectively, such that the set     : 1
H

f A f


 
  is R-bounded, respectively such that the set 

    : 1
H

f A f


 
  is WR-bounded). The infimum of all such   is denoted  H A  (respectively  RH A , respectively 

 WRH A ).  
 

There are certain obvious and trivial relationships between these concepts. Clearly R-sectorial implies WR -sectorial implies U-
sectorial and whenever these concepts are defined,      R WR UA A A    . 
 

Similarly RH  -sectorial implies WRH    sectorial implies H   sectorial and    RH WRHA A      H A A    
We now turn to less trivial observations: 
 

Proposition (1.11)[3]: 
 

Suppose A  is H  - sectorial and U -sectorial. Then    H UA A  . 
 

Proof: 
 

Let us assume that   , : argR A v     is U  bounded with constant k  where  v A , and v  . We will show 

that A  admits an  H 
   calculus. We use Proposition (1.8). Fix some  0 1s  . We can assume that there exists    

so that  
1 0

sup sup sup 2
k

k
k s

N t
h tA M


 

 
  



and so that A  admits an  H 
   calculus for some t  . 

 

Now suppose x X  and * *x X . Then for only N  and 1j    we have  

       * * *2 , 2 2 ,v k v k k
k s s s

k N k N
h tA x x M x x h tA h tA x x

 

     

 

By the resolvent equation, 

          1 12 2 1 2 2 , 2i vv k k k iv k iv k
s s sh tA h tA e t e R t e A h tA         

 

Since A  has an  H 
   calculus we can define     1 2

sg h z   and note that  

 
1

sup sup 2
k

k
k

N k N

g tA C



 

  

Where C  is independent of t . Thus, by the boundedness of   , : argR A v     

     1 1 2 *2 2 , 2 , 2k k iv k k

k N
t R t e A g tA x g tA kC x x   



  

It follows that  

   * 2 *2 , 2v k
k s

k N
h tA x x M kC x x



   

and this gives  
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  2

1 0
sup sup sup 2 2

k

v k
k s

N t k N

h tA M kC



  

     . 

 
Combined with a similar estimate for v  we obtain the result by using Proposition (1.8). 
 

In order to study an analytic semi-group with generator  A  it is of particular interest to know that   2H A  . Therefore we 

use Proposition (1.11) to improve on a result of .X T . Duong. 
 

Corollary (1.12)[3][2]: 
 

Let  A  generate an analytic contractive and positive semi-group on  ,pL   for some 1 p   . Then   2H A  .  
 

Proof:  
 

It is shown that  H A   and   2R A   . Hence we can apply Proposition (5.1.11). 
 

We remark that it is an open problem whether    H A A   whenever A  is H   sectorial. The next theorem gives some 
results in this direction. 
 

Theorem (1.13)[3]:   
 

Suppose A  is H   sectorial operator on a  Banach space X .  
 

Then: 

(i) If X  has property    then A  is RH   sectorial and        H RH R UA A A A      . 

(ii) If X  has property  A  then A  is WRH   sectorial and        H WRH WR UA A A A       

(iii) If X  has property    then A  is R -sectorial and      H R UA A A    . 
 

Proof:  

(i) Assume that A  admits an  H 
   calculus. Suppose v   . Suppose  0 1s   and let 

    
1
2v

sg z h z
 

. We then can argue by Lemma (1.5) that 
 

          
1

sup sup 2
k

N
k

k
N k N

g tA M


 
 

     

independent of t . Hence by Theorem (1.3) the family  2v k
k s

k N

h tA 



  
 
  
  is R-bounded with constant bounded independent of t

. Now by (15) and (16) it follows that if v    then     : 1
H

f A f




  is Rademacher-bounded. Indeed for 

 0kf H 


   and kx X  for1 k n   we have 

     
1 22

1

01 1
4max supsup 2 2

n n
iv j iv j

k k k n s k
t Nk k

E f A x E f e t h tA x     

   

   
       

 
�

 
 

It follows that    RH HA A  . Now clearly      U R RHA A A     and so  (i) follows from 
Proposition (1.11). 
 

(i) Is very similar. 
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(ii) Here we use Lemma (1.4). Suppose A  admits an  H 
  - calculus and suppose  v    . We 

show that the sequence   2 2 :k k ivtR te k Z 
 is Rademacher-bounded with constant independent 

of t .  To do this we note that if  1 2N N . 
 

    
   

   

1 1 2 2

1

2

1 1

1

2 2 , 2 2 ,

2 2 , 2 ,

N N N Niv iv

N
j j iv j iv

j N

tR te A tR te A

t AR tR A R te A 

 



  
 

Let       1 1
2iv ivk z z e z e z

 
   . Let       

1
2u z k z H 

   . We observe that  

 
1

1 2 2

1

1 1

sup sup 2
j

N
j

j
N N j N

u t A M


  

   

   . 

independent of t  by lemma  (1.5). Applying Theorem (1.3) yields that  

   
1

2

1
1 2

1

2 :
N

j

j N

k t A N N 

 

   
  
  

is Rademacher-bounded with constant independent of t . But this implies that  
     1 1 2 2

1 22 2 , 2 2 , :N N N tR Niv ivtR te A te A N N   

is also Rademacher-bounded with constant independent of t  . But this implies that

    1 1 2 2
1 22 2 , 2 2 , :N N N Ni itR te A tR te A N N   is also Rademacher-bounded with constan t  independent  of  t and hence 

( taking limits) so is   2 2 , :n n ivtR te A n N  . A similar argument for v  and an application of Lemma (1.4) shows that 

 R A v  . Hence    R HA A  . The proof is complete as in (i). 
 

As a corollary to the proof of Theorem (1.13) we obtain some additional information on the operator-valued calculus. Considered in 
Theorem (1.3). 
 

Corollary (1.14)[3]:  
 

Assume that X  has property    and let  F X L  be an R-bounded set. If A  is H   sectorial then for any  H A   

the set       : , ,F A F H A F      F  is R-bounded. 
 

Proof: 
 

Adapt the proof of Theorem (1.13) (i) using the fact that the set  
 

  2 :v k
k s kT h tA T  F A  

Is R-bounded,  again by Theorem (1.3). 
 
Theorem (1.15)[3][1]: 
 

Suppose A  and B  are H   sectorial operators such that B  is WRH   sectorial. Then for any  H A   and 

 WRH B    the pair  ,A B  has a joint  H  


  -calculus. 
 
 
 
 


