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Abstract 
 
In this paper we establish a theorem that proves the existence and uniqueness of the solution of the equation 

)(=)(2 tftuLp  under some conditions on the unbounded operator. This operator has a domain and a range 
belonging to Hilbert's Space. There are no general methods which may allow to establish if a periodic solution 
exists for some specific system of differential equations or not, and that is the reason that our problem is not trivial 
and has an important value in the theory of differential equation with operator periodic coefficients. 
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Introduction 
 
Searching for periodic solutions for  differential equations is not trivial. The main reason being that there are no 
general methods which may allow to establish if a periodic solution exists for some specific system of differential 
equations or not. Different methods and concepts should be inspected to find the best option but globally many of 
these methods are related to the perturbation theory [11]. 
 
In applied mathematics and physics, second order  differential equations or the equivalent system of two first order 
equations have a great importance [2]. 
 
Many problems in physics and engineering lead to a system of linear  differential equations with periodic 
coefficients. Lyapinov and Poincaré, who investigated the stability of periodic motions which are described by 
nonlinear  differential equations transformed the centroid problem into a system of linear  differential equations 
with periodic coefficients [5]. 
 

In the last years many results were achieved in the mathematical theory of  differential equations with periodic 
coefficients, see [1, 3, 6, 7, 8, 12, 13, 16]. 
 

Piao [13] investigated the existence and uniqueness of periodic and almost periodic solution of the differential 
equation with reflection of argument. The relationship between modules of forced term and solution of the equation 
is considered  
 

Benkhalti and Ezzinbi [1] studied the periodic solutions for some partial functional  differential equations . 
 

Li and Zhang [8] dealt with the existence of positive T -periodic solutions for the damped differential equation 
)(),(=)(=)(= tctxfxtqxtpx  , where p , q , )(1 RLc  are T-periodic functions and  RRR ,Carf  is 

T-periodic in the first variable. According to Li’s work, this proves that a weak repulsive singularity enables the 
achievement of new existence criteria through a basic application of Schauder’s fixed point Theorem. 
 

Huseynov [6] investigated nonlinear second order differential equations subject to linear impulse conditions and 
periodic boundary conditions. Sign properties of an associated Green’s function are exploited to get existence 
results for positive solutions of the nonlinear boundary value problem with impulse.  The results obtained yield 
periodic positive solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real 
axis. 
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Lillo [9] indicates the extension of some of the results of Hahn [4] for the Green’s function to equations of the form 
considered by Shimanov [14] for periodic differential difference equations. He also indicates the relation of this 
Green’s function to the representation problem. The results of Zverkin [17] for the case of a scalar equation where 
the lags are multiples of the period are studied. Convergence result for the series associated with Green’s function is 
established. This result along with those of Zverkin and Lillo [10] indicate a kind of “harmonic resonance” which 
occur in these equations. Nieto [12] obtained under suitable conditions, the Green’s function to express the unique 
solution for a second-order functional differential equation with periodic boundary conditions and functional 
dependence given by a piecewise constant function. This expression is given in terms of the solutions for certain 
associated problems. The sign of the solution is determined taking into account the sign of that Green’s function. 
 

Zhang and Wang [16] establish the existence and multiplicity of positive solutions to periodic boundary value 
problems for singular nonlinear second order ordinary  differential equations . The arguments are based only upon 
the positivity of the Green’s functions and the Krasnosel’skii fixed point theorem. They apply their results to a 
problem coming from the theory of nonlinear elasticity. Cabado and Cid [3] give a pL -criterium for the 
positiveness of the Green’s function of the periodic boundary value problem: 0=)( xtax   , )(=(0) Txx  , 

)(=(0) Txx   with an indefinite potential a(t). Moreover, they prove that such Green’s function is negative 
provided )(ta  belongs to the image of a suitable periodic Ricatti type operator. 
 

Theoretical Frame 
 

Consider the second order equation: 
 

)(=)()(=)(
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1

0=

22 tftuDMAtuDtuL k
thkjkj

m

jk
tp   (1) 

 

with unbounded operator kjA , the domain belongs to a Hilbert’s space X  and the range to a Hilbert’s space Y , 

YX  , 
YX

 , =kjh constant, )(=)( kjkjh htutuM  , k

k

k
k
t dt

d
i
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Hereafter, we assume that 0== 1000 hh . This condition allow us to include in (1) the classical solution without 
deviating argument. It is assumed that:  
 

 nction,periodicfuis)( tf  
 erators,isclosedop: YYAkj   

 perators.isboundedo: YXAkj   
 

 The existence of   - periodic solutions of (1) is the main question in this work. For this, we consider the complete 

orthogonal system of functions 
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 in Hilbert’s space )(0,2 L  and we expand the function 

)(tf  in a series with this system, i.e.  
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Multiplying both sides of (2) by 
nti

e
2

 and integrating the resulting equation from 0 to  , we get 
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This implies that  
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We will seek a periodic solution of (1) in the form of a Fourier series 
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equating the coefficients with the same powers of the exponential functions, we get  
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Assuming that the following condition holds:  
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which means that the spectrum of the operator pA  does not contain the points of real axis 

n2

, 1,...0,= n ,  
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has a nontrivial solution X0 , then the numbers 
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equation (6) can be written in the form  
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 which gives  
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where the resolvant operator XYRn :  depends on the parameter n . By Virtue of the enclosure YX  , we 
can consider the operator YYRn : . Introducing in the right side of (9) the value of nf , we get  
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We consider the function 1),(
2
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and then subtracting from both sides of (11) the   - periodic function   (t) E, expressed in uniformly convergent 
series   - periodic functions  
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adding and subtracting inside the square brackets of the operator  
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For the series 
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Hence, if we require that the conditions 
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converges absolutely and uniformly and its sum is a continuous and periodic function.  
 

Theorem 
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 then  
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 is continuously invertible. 
 

Proof 
 

We use Parseval’s equality which expresses the norm square of an element in a space with scalar product through 
the norm square of Fourier coefficients of this element by some orthogonal system of elements. In our cas, the 
equality: 
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From the derived inequalities a, b and c implies the existence of the functions: )(tu , )(tu  and )(tu  , through 
which we denote the convergent series (21) , and also the estimations 
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Uniqueness 
 

If we allow the existence of one more  -periodic solution )(1 tu  of (1), then  
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