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Abstract 
 

An analytic theory for the electromagnetic scattering from a perfectly electromagnetic conductor (PEMC) random 

grating is developed, using the duality transformation which was introduced by Lindell and Sihvola. The theory 

allows for the occurrence of cross-polarized fields in the scattered wave, a feature which does not exist in standard 

scattering theory. This is why the medium is named as PEMC. PEMC medium can be transformed to Perfect 
electric conductor (PEC) or perfect magnetic conductor (PMC) media. As an application, plane wave reflection 

from a planar interface of air and PEMC medium is studied. PEC and PMC are the limiting cases, where there is no 

cross-polarized component.  
 

1  Introduction 
 

The problems we are considering, i.e., scattering from half plane, strip or grating are very well known in the field of 

electromagnetics. Our aim is not to resolve these problems but introduce few random parameters in these planner 
boundaries [1, 2, 3, ?]. A complete solution exists for the perfectly electric conducting case in literature, based on 

the following equations and conditions, and to study the effects of the stochastic nature of these boundaries on the 

scattered field. Before examine the random boundaries, i.e., scatterers with random parameters it is instructive to 
examine the behavior of random grating, because in two dimensional planner perfectly conducting boundaries, with 

sharp edges. An effort has been made to transform average field from pec case to pemc case.  
 

2  Formulation 
 

Consider a random grating, random distribution of screens and gaps along 𝑥𝑧-plane [1], where 𝐿𝑛  is the length of 

nth screen and 𝑙𝑛  is that gap of nth gap. The length 𝐿𝑛  of screen and 𝑙𝑛  of gap are random variables with certain 

distributions.  
 

 
                  

Figure  1: Geometry of the problem 
   

Let us assume that a uniform plane wave is incident upon this random grating, shown in the Fig.(1). The incident 

field could be written as 
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 𝐸𝑖 = 𝑎 𝑧𝑒
𝑖𝑘𝑟 cos (𝜙𝑟−𝜙 ) = 𝑎 𝑧𝑒

𝑖𝑘 (𝑥cos𝜙 𝑖−𝑦𝑠𝑖𝑛 𝜙 𝑖) (1) 

 where we assumed unit amplitude wave and 0 < 𝜙𝑖 < 𝜋 
 

Simply need to know the probabilistic nature of this random boundary,the scattered field will also be random. The 

main objective is to calculate statistics of scattered field, at least up to second order. 
 

Suppose that length 𝑙𝑛  of screen and 𝑙𝑛  of gap are distributed exponentially and statistically independent i.e., i.i.e. 

random variables. Exponential distribution is chosen due to memoryless nature of random grating. Hence, they can 

be modelled as Poisson,s process. The average length of screen and gap are presented by < 𝐿 > and < 𝑙 > 
respectively. The probability density functions of these random screens and gaps are given by, 

 

 𝑃𝐿(𝐿) =
1

<𝐿>
𝑒−

𝐿

<𝐿> (2) 
 

 𝑃𝑙(𝑙) =
1

<𝑙>
𝑒−

𝑙

<𝑙> (3) 

fig.(..). 

The scattered GO field at the receiving point 𝑃(𝑟,𝜙) can be written as 
 

 𝐸𝑠(𝑃) = 𝐸𝐼,𝐼𝐼 + 𝐸𝑑  (4) 
 

where 𝐸𝐼,𝐼𝐼  represents the field reflected in the both regions and 𝐸𝑑  is the diffracted field due to edge contribution. 

Similarly, we can write the total field in the region II, i.e.,𝑦 > 0 at the observation point 𝑃1(𝑟,𝜙) as, 
 

3   Statistics of the Scattered Field 
 

The scattered field in the region I and in the region II is given by equations 
 

 𝐸𝑠(𝑃) = 𝑓(𝑥,𝑦)𝐸𝑟 +  𝑗 𝐸
𝑑(𝑗 )𝑦 < 0 (5) 

 𝐸𝑠(𝑃1) = 𝑔(𝑥,𝑦)𝐸𝑖 +  𝑗 𝐸
𝑑(𝑗 )𝑦 < 0 (6) 

 

where 𝐸𝑟  is field reflected by the wall and is given by 
 

 𝐸𝑟 = ℝ𝑒𝜄𝑘𝑟𝑐𝑜𝑠 (𝜙𝑟−𝜙) (7) 
 

and 𝑓(𝑥,𝑦) is either 1 or 0, depending upon observation point 𝑃(𝑟,𝜙), lies in the region of specular reflection 

point or no reflected. 𝐸𝑑(𝑗 ) represents the contribution of jth edge in the total diffracted field. 𝐸𝑖  is the field 

incident on the wall and 𝑔(𝑥,𝑦) has similar behavior as 𝑓(𝑥,𝑦) but 𝑔(𝑥,𝑦) = 0 where 𝑓(𝑥,𝑦) = 1 and vice 

versa. That is 𝑔(𝑥,𝑦) is the complementary of 𝑓(𝑥,𝑦) function. Now the average scattered field in the two regions 
can be written as 

 < 𝐸𝑠 >=< 𝐸𝑟𝑒𝑓 > +< 𝐸𝑑 > 𝑦 < 0 (8) 

 < 𝐸𝑠 >=< 𝐸𝑡 > +< 𝐸𝑑 > 𝑦 > 0 (9) 
 

and the variance of these fields could be written as 
 

 𝑣𝑎𝑟(𝐸𝑠) = 𝑣𝑎𝑟(𝐸𝑟𝑒𝑓 ) + 𝑣𝑎𝑟(𝐸𝑑) + 2ℜ𝑐𝑜𝑣(𝐸𝑟𝑒𝑓 ,𝐸𝑑)𝑦 < 0 (10) 

 𝑣𝑎𝑟(𝐸𝑠) = 𝑣𝑎𝑟(𝐸𝑡) + 𝑣𝑎𝑟(𝐸𝑑) + 2ℜ𝑐𝑜𝑣(𝐸𝑡 ,𝐸𝑑)𝑦 > 0 (11) 
 

4  Average Reflected Field and its Variance 
 

The reflected field at point 𝑃(𝑟,𝜙) in the region I, could be written as  

 𝐸𝑟𝑒𝑓 (𝑟,𝜙) = 𝑓(𝑥,𝑦)𝐸𝑟(𝑟,𝜙) (12) 
 

where 𝐸𝑟 , as given 

 𝐸𝑟(𝑟,𝜙) = ℝ𝑒𝜄𝑘𝑟𝑐𝑜𝑠 (𝜙𝑟−𝜙) (13) 

and 𝑓(𝑥,𝑦) could be modelled by telegraph signal process 𝑓(𝑥) defined by 
 

 𝑓(𝑥,𝑦) = 𝑓(𝑥) = {1, 𝑖𝑓𝑥𝑙𝑖𝑒𝑠𝑜𝑛𝑡𝑒𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑓𝑦𝑖𝑓𝑥𝑙𝑖𝑒𝑠𝑜𝑛𝑡𝑒𝑠𝑙𝑖𝑡 (14) 
 

This process is statistically stationary, i.e., independent of shift origin. The function 𝑓(𝑥,𝑦) is independent of y due 
to stationary nature of this function. Now average reflected field as,  

 < 𝐸𝑟𝑒𝑓 >=< 𝑓(𝑥) > 𝐸𝑟  (15) 
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where < 𝑓(𝑥) > is the average value of the telegraph process. 
 

 < 𝑓(𝑥) >=
<𝐿>

<𝐿>+<𝑙>
= 𝑀 (16) 

 𝑣𝑎𝑟(𝑓(𝑥)) =
<𝐿><𝑙>

<𝐿>+<𝑙>

2
= 𝑀(1 −𝑀) (17) 

 

where < 𝐿 > and < 𝑙 > are the average screen and slit lengths respectively. Hence final expression for the 

average reflected field will become, 
 

 < 𝐸𝑟𝑒𝑓 >=
−<𝐿>

<𝐿>+<𝑙>
𝑒𝜄𝑘𝑟𝑐𝑜𝑠 (𝜙𝑟−𝜙) (18) 

 

and the variance of the reflected field could be written as 
 

 𝑣𝑎𝑟(𝐸𝑟𝑒𝑓 ) =< 𝑓2(𝑥) > −< 𝑓(𝑥) >2= 𝑀(1 −𝑀) =
<𝐿><𝑙>

<𝐿>+<𝑙>

2
 (19) 

 

From the above equations it is clear that on the average the reflected field to be plane wave whose variance is a 
constant and depends on the average parameters of random grating, i.e., average length of screens and gaps. For 

large < 𝐿 >, variance decays and approaches to zero. 
 

5   Average Transmitted Field and its Variance 
 

In the region II, for 𝑦 > 0, the scattered field can be written as the incident field which has passed through the 

random grating and the diffracted field due to edges, where 𝐸𝑡  at point 𝑃1(𝑟,𝜙) is given by 
 

 𝐸𝑡(𝑟,𝜙) = 𝑔(𝑥,𝑦)𝐸𝑖(𝑟,𝜙) (20) 
 

where 𝑔(𝑥,𝑦) could be modelled by component of telegraph process, i.e., 
 

 𝑔(𝑥,𝑦) = 𝑔(𝑥) = 𝑓𝑐 (𝑥) (21) 
 

that is the effect of screen and slit is interchanged. 

The average value of the transmitted field in the region II given by, 
 

 < 𝐸𝐼𝐼(𝑟,𝜙) >=< 𝑔(𝑥,𝑦) > 𝐸𝑖(𝑟,𝜙) =
<𝐿>

<𝐿>+<𝑙>
 (22) 

 

The average transmitted field and its variance as, 
 

 < 𝐸𝑡 >=< 𝑔(𝑥) > 𝐸𝑖 = (
<𝑙>

<𝐿>+<𝑙>
)𝑒𝑖𝑘𝑟𝑐𝑜𝑠 (𝜙 𝑖−𝜙) (23) 

 

 𝑣𝑎𝑟(𝐸𝑡) =< |𝐸𝑡 |2 > −| < 𝐸𝑡 > |2 =
<𝑙><𝐿>

(<𝐿>+<𝑙>)2 (24) 
 

Again the average transmitted field is a plane wave with constant variations, and for much larger average screen 
lengths compared to gaps the average transmitted field goes to zero and its variance also approaches to zero. 

 

6   Average Diffracted Field and its Variance 
 

Now we will calculate the average diffracted field and its variance. The random grating has gaps distributed along 

its length, therefore at every transition point between screen and gap or vice versa, we have an edge and the field 

diffracted from it will contribute towards the total scattered field. To determine the location edges we need their 

statistical distributions, which will be derived from telegraph signal process 𝑓(𝑥). The edges on the screen are 

represented by transitions between 0  and 1  and 1  and 0  in 𝑓(𝑥) . To represent these edges explicitly the 

telegraph signal is differentiated as 
 

 |𝑓′(𝑥)| =  𝑖 𝛿(𝑥 − 𝑥𝑖) (25) 
 

As the lengths of individual screen and gap follow an exponential distribution, the transitions represented by Dirac 
delta functions. The positive sign for trailing wall edges and -ive for leading wall edges. The diffracted field from 

two types of edges will be calculated. To calculate the average rate of occurrence of the edge, i.e., 𝑓′(𝑥) > 0.  

Here, one edge is for each set of screen and gap and the average length of a screen and gap is given by < 𝐿 > and 

< 𝑙 > respectively. Similarly, there is one trailing edge for each set of screen and gap. The Poisson parameter for 
the edge is given by [2]  
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 𝜆 =
2

<𝐿>+<𝑙>
 (26) 

 

The total diffracted field will be the sum of contributions from all such edges, half of these edges will be the leading 

edges and other half will be trailing edges.  
 

Consider Far-zone approximation and assuming, they are independent from each other. 
 

The diffracted field due to all edge contributions could be written as, 
 

 𝐸𝑑 = 2𝐶  𝑗 𝐻𝑜
1(𝑘𝑅)𝑒𝑖𝑘 𝑥𝑗𝑐𝑜𝑠 𝜙

𝑖
 (27) 

 where 𝑅 =  (𝑥 − 𝑥𝑗 )2 + 𝑦2  and 𝐶 =
−1

4
 

 

In the above equations 𝑥′𝑗  are random points making the Poisson point process. Take the statistical expectation on 

both sides of above equation, the expression becomes as 
 

 < 𝐸𝑑 >= 2𝐶  𝑗 (< 𝐻𝑜
1(𝑘𝑅)𝑒𝑖𝑘 𝑥𝑗𝑐𝑜𝑠𝜙

𝑖
>) (28) 

 

Also it can written as convolution of two functions as, 
 

 𝐸𝑑 = 2𝐶𝑠(𝑥) = 2𝐶(𝑥) ⊗𝑔(𝑥)3 (29) 
 

where (𝑥) = 𝐻𝑜
1(𝑘𝑟) where 𝑟 =  𝑥2 + 𝑦2 

and 𝑠(𝑥) = 𝑞(𝑥) 𝑗 𝛿(𝑥 − 𝑥𝑗 ) 

The average diffracted field can be calculated,  

 < 𝑠(𝑥) >= 𝜆  
∞

−∞
𝐻𝑜

1(𝑘𝑅)𝑒𝜄𝑘𝛼𝑐𝑜𝑠 𝜙
𝑖
𝑑𝛼 (30) 

 

where 𝑅 =  (𝑥 − 𝛼)2 + 𝑦2 
 

 < 𝐸𝑑 >= 2𝐶 < 𝑠(𝑥) > (31) 
 

The average diffracted field can be written as, 
 

 < 𝐸𝑑 >= (
−𝜆

2
) 

∞

−∞
𝐻𝑜

1(𝑘𝑅)𝑒𝜄𝑘𝛼𝑐𝑜𝑠 𝜙
𝑖
𝑑𝛼 (32) 

Consider a uniform plane wave is incident on a perfectly conducting xz-plane at an angle 𝜙𝑖 , 

The incident field 𝐸𝑖  will induce a surface current on the plane given by [3] 
 

 𝐽𝑠(𝑥)𝑎 𝑧 =
2𝑘

(𝜔)(𝜇 )
𝑆𝑖𝑛(𝜙𝑖)𝑒𝜄𝑘𝑥𝑐𝑜𝑠 (𝜙 𝑖)(𝑎 𝑧) (33) 

 

This induced surface current density give rise to reflected field as given by the relation 

 𝐸𝑧
𝑟(𝑟,𝜙) = −𝑒𝜄𝑘𝑟𝑐𝑜𝑠 (𝜙𝑟−𝜙) =  

∞

−∞
𝐽𝑠(𝑥′)𝐺(𝑟;𝑥′)𝑑(𝑥′) (34) 

 where 𝐺(𝑟; 𝑥′) is the Green,s function given by,  
 

 𝐺(𝑟;𝑥′) =
−𝜔𝜇

4
𝐻𝑜

1(𝑘𝑅) (35) 

 where 𝑅 =  (𝑥 − 𝑥′)2 + 𝑦2 

Now using current expression, we get 

 

 𝑒𝜄𝑘𝑟𝑐𝑜𝑠 (𝜙𝑟−𝜙) =
𝑘

2
𝑠𝑖𝑛(𝜙𝑖) 

∞

−∞
𝑒𝜄𝑘𝑥 ′𝑐𝑜𝑠(𝜙𝑖)𝐻𝑜

1(𝑘𝑅)𝑑𝑥′ (36) 
 

Applying the identity 

 

 
∞

−∞
𝑒𝑖𝑘𝑥 ′cos (𝜙 𝑖)𝐻𝑜

(1)
(𝑘𝑅)𝑑𝑥′ =

2𝜆

𝑘  sin (𝜙 ′)
 𝑒𝑖𝑘𝑟 cos (𝜙𝑟−𝜙)  

∞

−∞
𝑥′cos(𝜙𝑖)𝐻𝑜

1(𝑘𝑅)𝑑𝑥′ =
2𝜆

𝑘sin (𝜙 𝑖)
𝑒𝑖𝑘𝑟 cos (𝜙𝑟−𝜙)

 (37) 

The average diffracted field can be written as, 
 

 < 𝐸𝑑 >=
−𝜆

𝑘𝑠𝑖𝑛 (𝜙 𝑖)
𝑒𝜄𝑘𝑟𝑐𝑜𝑠 (𝜙𝑟−𝜙) (38) 
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therefore expression for variance of 𝑠(𝑥) 
 

 𝑣𝑎𝑟(𝑠(𝑥)) = 𝜆  
∞

−∞
𝐻𝑜

1(𝑘𝑅)𝐻𝑜
2(𝑘𝑅)𝑑(𝛼) (39) 

 

where 𝑅 =  (𝑥 − 𝛼)2 + 𝑦2 

and expression for diffracted field can be written as, 
 

 𝑣𝑎𝑟(𝐸𝑑) =
𝜆

4
 
∞

−∞
𝐻𝑜

1(𝑘𝑅)𝐻𝑜
2(𝑘𝑅)𝑑(𝛼) (40) 

 

The integral in the above equation is not convergent, therefore second moment of variant or the variance of 

diffracted field is not finite. This is due to the fact that in the averaging we have considered every possible 

realization of the Poisson points and on the average there effect tends to a plane wave but there is infinite power in 
the plane wave. We can model the statistics of diffracted field by Heavy Tail distributions, because its mean is finite 

but second moment is infinite. The above field can be transformed from perfectly electric conducting case to 

perfectly electromagnetic conducting case by the concept of PEMC introduced by Lindell and Sihvola [3, ?] is a 
generalization of both PEC and PMC. An analytic theory for the electromagnetic scattering from a PEMC plane 

where a line source has been placed randomly, is developed.  
 

The PEMC medium characterized by a single scalar parameter 𝑀, which is the admittance of the surface interface, 

where 𝑀 = 0 reduces the PMC case and the limit 𝑀 → ±∞ corresponds to the perfect electric conductor (PEC) 

case. The theory allows for the occurrence of cross-polarized fields in the scattered wave in the scattered wave, a 

feature which does not exist in standard scattering theory. This means that PEC and PMC are the limiting cases, for 
which there is no cross-polarized component. Because the PEMC medium does not allow electromagnetic energy to 

enter, an interface of such a medium behaves as an ideal boundary to the electromagnetic field. At the surface of a 

PEMC media, the boundary conditions between PEMC medium and air with unit normal vector 𝑛, are of the more 

general form. Because tangential components of the 𝐸 and 𝐻 fields are continuous at any interface of two media, 

one of the boundary conditions for the medium in the air side is 𝑛 × (𝐻 + 𝑀𝐸) = 0, because a similar term 

vanishes in the PEMC-medium side. The other condition is based on the continuity of the normal component of the 

𝐷 and 𝐵 fields which gives another boundary condition as 𝑛. (𝐷 −𝑀𝐵) = 0. 
Here, PEC boundary may be defined by the conditions  

 𝑛 × 𝐸 = 0,        𝑛.𝐵 = 0 (41) 

 While PMC boundary may be defined by the boundary conditions  

 𝑛 × 𝐻 = 0,        𝑛.𝐷 = 0 (42) 
 

where 𝑀 denotes the admittance of the boundary which is characterizes the PEMC. For 𝑀 = 0, the PMC case is 

retrieved, while the limit 𝑀 → ±∞ corresponds to the PEC case. Possibilities for the realization of a PEMC 
boundary have also been studied [4]. It has been observed theoretically that a PEMC material acts as a perfect 

reflector of electromagnetic waves, but differs from the PEC andthe PMC in that the reflected wave has a 

cross-polarized component. The duality transformations of perfectly electric condutor (PEC) to PEMC have been 

studied by many researchers [3, ?, 4, 5, 6, 7, 8]. Here we present an analytic scattering theory for a PEMC step, 
which is a generalization of the classical scattering theory. 
 

Applying a duality transformation which is known to transform a set of fields and sources to another set and the 
medium to another one. In its most general form, the duality transformation can be defined as a linear relation 

between the electromagnetic fields. The effect of the duality transformation can be written by the following special 

choice of transformation parameters:  

  
𝐸𝑑
𝐻𝑑

 =  
𝑀𝜂0 𝜂0
−1

𝜂0
𝑀𝜂0

  𝐸
𝐻

  (43) 

 has the property of transforming PEMC to PEC, while  

  𝐸
𝐻

 =
1

(𝑀𝜂0)2+1
 
𝑀𝜂0 −𝜂0
1

𝜂0
𝑀𝜂0

  
𝐸𝑑
𝐻𝑑

  (44) 

 

 has the property of transforming PEC to PEMC [?]. 
 

Following the above relations [3], the transformed equations becomes as  
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 𝐸𝑟 = −
1

𝑀2𝜂0
2+1

 (−1 + 𝑀2𝜂0
2)𝐸𝑖 + 2𝑀𝜂0𝑢𝑧 × 𝐸𝑖  (45) 

 

 𝐸𝑠𝑑 = −(𝑀𝜂0𝐸𝑠 + 𝜂0𝐻𝑠) (46) 

 𝐻𝑠𝑑 = −
1

𝜂0
𝐸𝑠 + 𝑀𝜂0𝐻𝑠  (47) 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 𝑀𝜂0𝐸𝑠𝑑 − 𝜂0𝐻𝑠𝑑   (48) 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 ((𝑀𝜂0)2 − 1)𝐸𝑠 − 2𝑀𝜂0

2𝐻𝑠  (49) 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 ((𝑀𝜂0)2 − 1)𝐸𝑠 − 2𝑀𝜂0𝐸𝑠  (50) 

 

Where 𝐸𝑠, 𝐻𝑠  are transformed pemc average fields and 𝐸𝑠𝑑 , 𝐻𝑠𝑑  are average scattered elecric and magnetic fields 

respectively. This means that, for a linearly polarized incident field 𝐸𝑖 , the reflected field from a such a boundary 

has a both co-polarized component, while 𝑢𝑧 × 𝐸𝑖  is a cross-polarized component, in the general case. For the 

PMC and PEC special cases (𝑀 = 0 and 𝑀 = ±∞ respectively), the cross-polarized component vanishes. For the 

special PEMC case 𝑀 =
1

𝜂0
, such that 

 (𝐸𝑟 = −𝑢𝑧 × 𝐸𝑖) (51) 
 

which means that the reflected field appears totally cross-polarized. It is obvious theoretically that a PEMC material 

acts as a perfect reflector of electromagnetic waves, but differs from the PEC (𝐸𝑟 + 𝐸𝑖) = 0 and 𝐻𝑟 = 𝐻𝑖) and 

PMC ( 𝐸𝑟 = 𝐸𝑖  and 𝐻𝑟 + 𝐻𝑖 = 0) in that the reflected wave has a cross-polarized component. 
 

7  Concluding remarks 
 

In this work, a plane wave scattering by a Perfectly Electromagnetic Conducting random grating has been studied. 
The theory provides explicit analytical formulas for the electric and magnetic field. An other formulla has been 

derived for the relative contributions to the scattered fields of the co-polarized and the crosspolarized fields depend 

on parameter 𝑀. The cross-polarized scattered fields vanish in the PEC and PMC cases, and are maximal for 

𝑀 = ±1. In the general case,the reflected wave has both a co-polarized and a cross-polarized component. The 
above transformed solution presents an analytical theory for the scattering by randomly placed perfectly 

electromagnetic conducting random grating. It is clear from the above discussion that for 𝑀 → ∞ and 𝑀 → 0 

correspond to the PEC and PMC respectively. Moreover, for 𝑀 = ±1 the medium reduces to PEMC.  
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