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Abstract 
 

This paper presents confidence intervals for adjusted means using linear regression with weighted sum contrasts 

and applies the method to a study comparing blood lead concentrations among Pattani school children. These 
intervals are “democratic” in the sense that they compare the mean for each factor level with the overall mean, 

rather than selecting a referent. Confidence intervals based on negative binomial GLM models with sum contrasts 

are also recommended for comparing incidence rates for levels of a study factor after adjusting for biases due to 
associations with covariate factors. This method is applied to the terrorism events in regions of Southern 

Thailand that occurred over the period from 2004 to 2009. 
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1. Introduction 
 

Scientific studies commonly involve comparisons of means and rates with respect to a categorical study factor of 
interest. This study factor could be a demographic factor (age group and gender) or location or the period of time 

(year or month, say). For example, an environmental study may investigate the variation in an outcome of interest 

such as the mean abundance of a species of fish at specific locations along a river as pointed out previously 

(Nowell et al., 2009). Similarly, epidemiologists may compare mean blood lead concentrations among children in 
different age-gender groups exposed to contamination from mining activities near their area of residence. For 

climate scientists the outcome of research interest nowadays is global temperature increase with particular 

emphasis on the rates of increase at different latitudes in recent decades, and social scientists wish to know 
whether residents in different locations in a terrorist area have experienced different risks of attack, and how these 

incidence rates change with time. 
 

For such studies, methods exist for measuring differences in these quantities, and for assessing the statistical 

significance of their differences. Analysis of variance (ANOVA) based on an appropriate statistical regression 

model provides relevant p-values for assessing the evidence that observed differences are real. Furthermore, this 
method can take into account distortions due to the effects of covariates that can mask or amplify the magnitudes 

of these differences. Such methods are well established and comprehensively explained in the statistical literature 

as pointed out previously (Fox, 1997; Venables & Ripley, 2002). Despite the many available statistical methods 

for assessing relations between study factors and outcomes of interest, these methods do not yet routinely provide 
appropriate confidence intervals for graphically displaying the results of the analysis. In this paper we show how 

such confidence intervals may be constructed for comparing means and incidence rates, and we give two 

illustrations of their application. 
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2. Methods 
 

2.1 Confidence intervals for means using linear regression 
 

Linear regression as pointed out by Cook & Weisberg (1999) is a statistical method widely used to model the 

association between a continuous outcome and a set of fixed determinants. The model expresses the outcome 

variable as an additive function of the determinants. For example, if there are two categorical determinants with 
levels indexed by subscripts i and j, the model takes the form 

jiijY   .     (1) 

In this case the number of parameters is r + c – 1 where r and c are the number of levels of the factors  and , 
respectively, thus requiring two constraints, such as 1 = 0 and 1 = 0. We also assume that the errors are 

independent and normally distributed with mean 0 and constant standard deviation. The model may be fitted to 

the observations yij by least squares, giving estimates and confidence intervals for the parameters. Equation (1) 
generalizes straightforwardly to any specified number of categorical determinants. 
 

When the constraints 1 = 0 and 1 = 0 are used the confidence intervals apply to the differences between each of 

the sets of parameters and the first parameter specified in each factor. These differences are known as treatment 
contrasts. In practice, it is often preferable not to single out a specific level of a factor as a basis for comparison, 

but rather to treat all factor levels in the same way. This can be achieved by using sum contrasts available in 

commonly used software packages such as R as pointed out by R Development Core Team (2009). However, as 
has been pointed out by Venables & Ripley (2002), Section 6.2, these contrasts are not valid for unbalanced 

designs, such as those for which the number of observations is not the same for each level of a factor. Thus it is 

necessary to construct specific contrasts for linear regression models where the sample sizes vary with the factor 
levels, and this can be accomplished by using weighted sum contrasts rather than treatment contrasts as pointed 

out previously (Tongkumchum & McNeil, 2009). These weighted sum contrasts provide standard errors for the 

differences between each factor level and their overall mean. 
 

The method for adjusting means to reduce the effects of covariate factors involves first removing the effect of the 

covariate from each observation by replacing yij by iijy ̂ and then adding a constant to ensure that the mean of 

the corrected observations remains the same as the mean of the original observations. As a result, the adjusted 

mean is dy jj ̂ , where d is a constant chosen to ensure that the overall mean before and after the adjustment 

remains the same. It follows that  yd , where   is the mean of the estimated  parameters. This method is 

widely used in practice. For example, economists seasonally adjust time series such as unemployment rates in this 
way. This method also applies to data that need to be transformed to satisfy the normality assumption, by first 

applying the method to the transformed data and then rescaling the result to ensure that the means of the 

untransformed data are the same before and after adjustment. It also extends straightforwardly to any number of 
covariate factors. 
 

2.2 Confidence intervals for incidence rates using the negative binomial model 
 

The Poisson generalized linear model is widely used for modeling event counts in incidence rates as pointed out 
by Crawley (2005). For two additive factors as in the linear model given by equation (1), if Pij is the population 

denominator, the expected value of the cell count Nij is expressed as 
 

  )exp( jiijij PNE   .        (2) 
 

However, the Poisson model often does not fit incidence data in practice because it assumes that the variance is 

equal to the mean, and in many situations the variance is substantially greater than the mean as pointed out 

previously (Jansakul & Hinde, 2004; Kongchouy et al., 2010; Mohai & Sara, 2007). The standard negative 

binomial GLM is a generalization of the Poisson model with the same mean , but the variance is  (1+ / )  

where  > 0 as pointed out previously (see, for example, Chapter 7, Venables & Ripley, 2002). This over-
dispersion is often the result of clustering as pointed out by Demidenko (2007). Since deviances rather than sums 

of squares are appropriate for assessing the contributions from the factors in generalized linear models, the 

ANOVA table is replaced by an analysis of deviance table for these models, where  is kept fixed as pointed out 
previously (see, Section 7.4, Venables & Ripley, 2002). 
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By analogy with the method used for means based on the linear regression model, it is reasonable to define the 

adjusted incidence rate for level j of factor  as  kj ̂exp , where the constant c is chosen to ensure that the total 

number of adverse events based on the fitted model matches the number observed, that is, 
 

 kPn jijij   ̂exp .    (3) 

Thus the constant is  

  )ˆ(explog jijij Pnk  .      (4) 

 

3. Illustrations 
 

3.1 Blood lead concentration in Pattani school children 
 

A study involving 433 boys and girls aged 4-13 attending five schools in three different locations along the 

Pattani River in Southern Thailand as pointed out previously (Geater et al., 2000) compared geometric means of 
blood lead concentration in micrograms/deciliter at the five schools. The locations were (a) a village halfway up 

the river (school 1), (b) two villages about 10 km downstream from the river source near recently operating tin 

mines (schools 2 and 3), and (c) the river mouth near a ship repair facility (schools 4 and 5). The left panel of 

Figure 1 shows a histogram of the blood lead concentrations, with skewness coefficient 0.77. A logarithmic 
transformation reduces this skewness to –0.10, as shown by the histogram in the right panel. 
 

Figure 2 shows 95% confidence intervals comparing the means of the log-transformed blood lead concentrations 
with respect to the two factors (1) age-group and gender combined, and (2) school, before and after adjusting for 

the other factor. Note that the adjustment has very little effect on the comparison with respect to schools. The 

children at the school halfway up the river had much lower blood lead levels, probably because those in the 

schools at the river mouth were exposed to contamination from the lead in ship paint, whereas those in the schools 
near the river source were exposed to contamination from previous mining activity. 
 

However, the adjustment has a substantial effect on the comparison with respect to the combined age-group and 
gender factor. There is no clear pattern in the crude means, but after adjusting for the difference between schools, 

these means show a tendency to decrease with age for both sexes, except for the boys aged 11-13. This effect 

could be due to the fact that both the boys and the girls swim in the river when young, but only the boys continue 

after they reach puberty. This example is instructive because it shows how bias can occur in unbalanced study 
designs. Table 1 shows the numbers of children in the study sample classified by gender, age group and school. 

Note that 15 of the 17 boys aged 4-6 were at School 1 and this school had the lowest average blood lead levels. If 

the sample were perfectly balanced there would be only 5 boys aged 4-6 at this school with the remaining 12 at 
the other schools, and as a result the average blood lead level for these young boys would be much higher. The 

adjusted averages thus reflect what would be expected in a balanced sample, which would give a more accurate 

picture of the study population. 
 

3.2 Victims of violence in Southern Thailand 
 

For our second illustration we consider incidence rates per 100,000 population of non-Muslim victims of 

terrorism events classified by gender, age group (< 25, 25-44, and 45 or more), province of residence (Pattani, 
Yala and Narathiwat) and year (the six calendar years from 2004 to 2009 inclusive). These data were retrieved 

from a database maintained by the Deep South Coordination Centre (DSCC), Faculty of Science and Technology, 

Prince of Songkla University, Pattani Campus. The population denominators were obtained from the 2000 
Population and Housing Census in Thailand.  
 

To allow for interactions between pairs of these factors, we first fitted a negative binomial model containing all 

such interactions, for which the analysis of deviance is listed in the top panel of Table 2. Even though the age-
group by year interaction is highly significant in model A, model B (for which the estimated value of  (12.1) has 

standard error 2.4) was preferred to model A because it is difficult to interpret an interaction between one factor 

and two other factors at the same time, and the interaction between year and province is statistically much 
stronger than that between age-group and year. Moreover, an interaction between age-group and year is likely to 

be largely influenced by demographic changes in the population rather than by changes in the nature of the risk 

itself.  
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Figure 3 shows 95% confidence intervals for adjusted incidence rates based on model B. To simplify 

interpretation of the interaction between province and year, these factors are replaced by a single factor with 18 
levels. The highest risk is seen for males aged 25-44 and the lowest risk is seen in females aged less than 25. For 

all three provinces the risk increased from 2004 to 2007 and then decreased with different rates, but these patterns 

differ by regions; Pattani increased more slowly at first but failed to decrease as much after 2007, and the risks in 

2008 and 2009 stabilized to similar values in all three provinces. The hollow red circles show the crude 
(unadjusted) incidence rates, which are not substantially different from the adjusted rates. 
 

4. Discussion 
 

In this paper we have described a simple method for adjusting means and incidence rates for categorical 
covariates and providing corresponding confidence intervals based on a fitted linear regression model. This 

problem is not new and the solution we have given for means is well known. However, the fact that this solution 

can be applied in principle to more general statistical models is not well known, although the problem was 
considered as pointed out by Lane & Nelder (1982) who gave a slightly different solution. A further advantage of 

the method is that by using appropriately weighted sum contrasts the mean or incidence rate for each level of the 

study factor can be compared with the overall mean or incidence rate rather than with that for a specified 

reference group. 
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Table 1. Sample sizes of schoolchildren classified by gender, age group, and school 
 

 boys  girls 

 age group  age group 
school 4-6 7 8 9 10  11 12+  4-6 7 8 9 10 11 12+ 

1 15 10 7 14 10 8 8  16 14 13 3 2 9 6 

2 0 2 7 2 0 8 8  0 0 5 1 2 6 5 

3 1 6 6 8 15 6 10  5 5 12 12 13 10 19 

4 0 2 6 3 6 7 7  2 3 6 6 3 7 4 

5 1 3 3 7 2 6 0  4 8 6 9 7 6 0 
 

Table 2. Analysis of deviance for model containing interactions (top panel) and reduced models for fitting 

victim violence incidence rates in Southern Thailand 
 

Source of variance df deviance deviance/df p-value 

 Full model ( = 136.5)     

gender 1 2171.0 2171.0 < 0.00001 

age-group 2 957.0 478.5 < 0.00001 

year 5 587.0 117.2 < 0.00001 

province 2 79.5 39.7 < 0.00001 

gender  age group 2 10.2 5.1 0.12772 

gender  year 5 26.7 5.3 0.05467 

gender  province 2 20.1 10.0 0.01710 

age-group  year 10 103.0 10.3 < 0.00001 

age-group  province 4 19.9 5.0 0.08885 

year  province 10 151.0 15.1 < 0.00001 

residuals 64 155.6   

 Reduced model A ( = 23.8)     

gender 1 958.8 958.8 < 0.00001 

age-group 2 380.6 190.3 < 0.00001 

year 5 290.6 58.1 < 0.00001 

province 2 30.6 15.3 < 0.00001 

age-group  year 10 47.7 4.8 0.00109 

year  province 10 73.7 7.4 < 0.00001 

residuals 77 132.5   

 Reduced model B ( = 12.1)     

gender 1 583.0 583.0 < 0.00001 

age-group 2 232.0 116.0 < 0.00001 

year 5 185.0 36.9 < 0.00001 

province 2 26.2 13.1 0.00084 

year  province 10 50.3 5.0 < 0.00001 

residuals 87    
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Figure 1. Histograms of blood lead concentrations in micrograms per deciliter before (left panel) and after 

transformation using natural logarithms (right panel) 
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Figure 2. The 95% confidence intervals of average blood lead levels before (left panel) and after (right 

panel) adjusting for the other factor 
 

 
 

Figure 3. Annual incidence rates of victim terrorism violence per 100,000 populations in the three southernmost 

provinces of Thailand classified by gender, age group, and years 2004-2007 (the hollow circles indicate 
corresponding unadjusted incidence rates) 


