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Abstract 

 

It has been shown that Response Surface Models (RSMs) may be used to aid the analyst in the understanding of 

ecological phenomena. Given a dynamic system model of a predator-prey system, strategic use of analytical and 

numerical methods may allow for estimation of ecological parameters within mathematical models. This is 

significant, in particular by noting the manner in which RSMs are constructed. Given scattered (discrete) data, 

radial basis functions (RBFs) and an interpolation parameter denoted by “c” is chosen. What results is a 

continuous and often differentiable model. This is significant as data collected from field measurements most 

likely presents in scattered form. The purpose of this treatment is to provide analysts with a pragmatic means by 

which parameters that are integral components of equations governing predator-prey interactions may be 

estimated. The fundamental conclusion is that RSM consistency, and insensitivity, to c results in accurate 

ecological parameter estimation. 
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1. Introduction 
 

While predator-prey interactions are typically described by dynamic system models governed by ordinary 

differential equations (ODEs), RSMs that produce continuous and differentiable models are of great utility. A 

fundamental issue in the study of predator-prey interactions is the inherent difficulty in rectifying the 

mathematical models with data that is gathered in the field. It is in the spirit of “closing the gap” between theory 

and practice that it seems natural to use RSMs towards this end. Data collected from the field is by nature discrete 

while dynamic system models are most likely continuous in time. Therefore, the impetus exists to invoke 

techniques that are accepting of discrete data to aid in the analysis of predator-prey systems that are by nature 

continuous. The proposed method for parameter estimation developed is numerical and of course aligns perhaps 

more closely with the “theoretical” side of parameter estimation in ecological systems. However, given the 

importance of understanding and sustaining acceptable levels and health of natural resource systems, it is felt that 

such techniques are necessary to more closely align theory and practice.  
 

In (McDonald, 2013), RSMs created via RBFs were used to estimate ecological parameters. However, this was 

executed considering a single RBF and interpolation parameter c. Here, that effort is extended so that the analyst 

may have useful strategies which provide a greater level of assurance that the constructed RSM model(s) (and 

derivatives) will produce useful, accurate estimates. We will achieve this by demonstrating that function, gradient, 

and Hessian matrix characteristics of the RSM are insensitive to change in the interpolation parameter when 

“good” ecological parameter estimates may be gleaned from constructed RSMs. 
 

A useful reference regarding the RBFs and the resulting RSMs so constructed may be found in (McDonald, et al., 

2007). This details the manner in which RSMs are created; analytical formulas for gradient vectors and Hessian 

matrices are also provided. In (McDonald 2013) the special case was considered where a single RSM (cubic) with 

the interpolation parameter        was used to accurately estimate parameters that appeared in the predator 

biomass time rate of change ODE. This treatment is inspired by (McDonald 2013) but is unique in that it 

demonstrates use of a control algorithm defined in that effort, coupled with varying c (creating new models with 

each unique value of c), leads to consistent parameter estimates leveraging several RSMs. 
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2. Background Information 
 

For the dynamic system model, we consider the ratio-dependent predator-prey system considered in (Kar et al., 

2004) which is a variant of a Holling-Tanner model (Sun et al., 2010 and Froda, et al, 2009) given by 
 

          
  

 
  

     

    
     

          
  

   
                              

                                                                                                                         (1) 

 

For comparison, systems with a so-called “prey-dependent” functional responses are often studied; one example 

where a prey-dependent system was studied in a related fashion to the present treatment is (McDonald 2012). In 

(1), biomass of the prey is given by   while predator biomass is given by   . The carrying capacity for the prey is 

denoted by K, r is the intrinsic growth rate,   is the maximum harvesting rate, α is the half-saturation level, with q 

known as the catchability coefficient. The intrinsic growth rate for the predator is denoted by s, and, by 

inspection, the parameter   represents the ratio of predator to prey biomass at equilibrium (Kar et al., 2004). As in 

(McDonald, 2013), it is assumed that the harvesting effort   satisfies         . Given the form of (1) it is 

clear that the prey may be harvested, while the predator is not (predator is protected from harvest).The control 

algorithm Instantaneous Maximization of Net Economic Revenue (IMNER) was developed in (McDonald 2013). 

The details of the development may be found there, but the fundamental idea was to select a harvesting effort 

(control variable u) that maximized net economic revenue (Kar et al., 2004) at each instant. It was shown in 

(McDonald, 2013) that the IMNER algorithm produced sustainable, equilibrium (parameter) values of predator 

and prey, which provided for the accumulation of revenue important to economic ventures (net economic 

revenue) and regulatory agencies, typically governmental entities (total discounted net economic revenue). For 

reference, the net economic revenue is (Kar et al., 2004) 
 

                                                                                                                                   (2) 
 

with total net economic revenue given by  
 

    

 
                   

 

 
                                                                                                                       (3) 

 

Within (2) and (3), q is, as before, the catchability coefficient, C is the cost of fishing per unit effort, and   is the 

rate of taxation. More detailed information may be found in (McDonald, 2013), but by instantaneous 

maximization of net economic revenue, the control law is selected by satisfying 
 

                                                                                                                                                         (4) 
 

at each instant. The maximization (4) is equivalent to satisfying first-order necessary conditions for the 

minimization problem 
 

                                                                                                                                (5) 
 

It is well known that minimization proceeds by forming the Lagrangian, applied to (5) in this case, and applying 

first-order necessary conditions (Vincent and Grantham, 1997). This ultimately yielded the IMNER algorithm; the 

algorithm and the details of the derivation using necessary conditions given by the Lagrangian may be found in 

(McDonald 2013) stated here it is  
 

              
                                                                                                                                                        (6) 

                  
 

where   
 

                                                                                                                                                         (7) 
 

Clearly, σ dictates when harvest is at a minimum level (no harvest), a maximum level (maximum harvesting 

effort) or at an intermediate level. Of course, the IMNER algorithm is implemented numerically in the following 

examples. Therefore, we allow the singular control regime (  ) when         .  
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The IMNER algorithm (6) is a version of variable structure control, with   known as a switching surface because 

the control varies from minimum to maximum across this surface (Vincent and Grantham 1997). An interesting 

phenomenon occurs when    ; the control (harvesting) effort supplied during this time is analogous to singular 

control. Note that it is this singular control that allows for continual harvest once the predator and prey have 

reached equilibrium (constant) values (McDonald 2013). For reference, the total discounted net economic 

revenue, which represents benefits (via taxation) to regulatory agencies is  
 

                  
 

 
                                                                                                                                     (8) 

 

With the parameter δ known as the instantaneous rate of annual discount (Kar et al. 2004). 
 

3. Consistent Response Surface Models 
 

As in (McDonald 2013) the so-called predator biomass time rate of change (PBTRC), which is the “right-hand 

side” of the second of equations (1) will be sampled across a grid of points. That is the right hand side of 
 

          
  

   
 

                        

                                                                                                                                                   (9) 

 

is the PBTRC and is now denoted by F(x). The gradient of (9) is  
 

      

  
 

  

  
  

   
 

   
   

    

   
                                                                                                                                  (10) 

 

with the Hessian matrix of F(x) given by 
 

       

    
   

     

     
 

   
 

    

   
 

    

   
  

  

   

                                                                                                                                (11)  

 

Note that while the F(x) is the function to be sampled, we will denote the corresponding RSM, created by 

evaluating F(x) at sampled data points, by f(x). This is an important distinction that must be clearly made. We are 

departing from purely, continuous time (ODE) models of predator-prey relationships. Scattered data is what will 

be gathered from the field. We leverage RSMs to estimate parameters within mathematical models (1, 9). To 

illustrate this, we must consider both the ecological structure and characteristics that are present within the ratio-

dependent predator-prey model, recalling the mechanics of constructing RSMs of from scattered data. It will be 

shown that this scattered data may be assembled into continuous and differentiable mathematical models. By 

varying c, the analyst may estimate ecological parameters accurately by monitoring the “consistency” and 

“sensitivity” of the created models. 
 

3.1 Cubic Response Surface Models 
 

In this subsection, we construct two RSMs based upon F(x). The parameter c is quite different for each model. 

This is undertaken to demonstrate how c results in very different function, gradient, and Hessian matrix models of 

F(x). The crucial implication is that widely varying models, mindful of the analytic gradients and Hessians (10, 

11), produce much different estimates for ecological parameters. 
 

In order to easily compare the present results with those from the literature, we consider the dynamic system (1) 

with the following values for the “actual” parameters. That is, we let      ,      ,      ,     , 

      ,      , and    . Also, we sample F(x) over the same space as in (McDonald 2013); given by 

                 , and                  . From these points, an RSM is created so that we may compute 

gradients and Hessian matrix values. We will consider the cubic radial basis function (McDonald et al. 2007) 
 

                                                                                                                                                                (12) 
 

and consider the interpolation parameter c taking multiple values. 
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3.1.1 RSMs via Multiple “c” Values 
 

Let all constants found in (1) be given by the values listed in the text immediately preceding (12). First, let c 

satisfy      . Following the procedure outlined in (McDonald et al. 2007, McDonald 2013), given the grid of 

points, a numerical simulation was executed which created a response surface model     .  
 

The gradient and Hessian matrix of      was evaluated (again for consistency with the literature) at          

and         . The gradient and Hessian matrix values at this point are displayed in Table 1.  Now, let c satisfy 

     . The gradient and Hessian matrix of      was evaluated at          and         . The gradient and 

Hessian matrix values at this point are displayed in Table 2. The analytic gradient and Hessian matrix values are 

clearly different. This underscores the point that parameter estimation must be supported by similar gradient and 

Hessian matrix evaluations, despite the value of c. That is, a fundamental characteristic of such systems is that 

ecological parameters are insensitive to changes in the interpolation parameter c. 
 

Now, we let      . As before, a numerical simulation was executed which created a response surface model 

    . The gradient and Hessian matrix of      was evaluated at          and         . The gradient and 

Hessian matrix values at this point are displayed in Table 3. 
 

Finally, let      . As before, a numerical simulation was executed which created a response surface model 

    . The gradient and Hessian matrix of      was evaluated at          and         . The gradient and 

Hessian matrix values at this point are displayed in Table 4. These four tables illustrate interesting phenomena. 

Clearly, variation is seen in both the gradient vector and the Hessian matrix. This variance is a phenomenon that 

may be exploited to discern information regarding parameter estimates of ecological systems. 
 

3.1.2 Example: Two Ecological Parameter Estimates for Varying “c” values 
 

Note that in the analytical expressions for the gradient and the Hessian matrix of F(x) (10, 11) involve only two 

unknowns for a given level of prey biomass    and predator biomass   , s and  . Therefore, we may set the two 

“bold” numerical values in Tables 1-4 equal to the corresponding gradient and Hessian matrix entry in (10) and 

(11) respectively. This allows for parameter estimation. For example, from the gradient of F(x) in Table 1 we may 

set                      in (10) and from the Hessian of F(x) in Table 1 we may set          
        in (11). This was executed for RSMs generated by the interpolation values represented in Tables 1-4; the 

results are shown in Table 5 and represent ecological parameter estimates derived from response surface models. 

In particular note that two pairs of the interpolation parameter c each differ in magnitude by 0.5. 
 

3.2 Sensitivity of Parameter Estimates with Respect to “c”  
 

Sensitivity may be defined in a number of ways (Grantham and Vincent 1993, Figliola and Beasley 2006). Here 

we take sensitivity of ecological parameters as a (discrete) change in the parameter with respect to the (discrete) 

change in c. Considering (1), and the above discussion, recall that the “real” values of s and   are 1.2 and 5.0 

respectively. Table 5 illustrates estimates for these ecological parameters based upon response surface models 

created with differing values for c. Clearly, c values of 2.5 and 3.0, for the cubic RBF, result in better estimates as 

compared to the “real” values. It is significant and curious to note that more accurate estimates are less sensitive 

to changes in the interpolation parameter. Let the sensitivity of the parameter s with respect to c be given by  
 

     
           

           
   

  

  
                                                                                                                                         (13) 

 

And the sensitivity of the parameter   with respect to c be given by 
 

     
           

           
   

  

  
                                                                                                                                        (14) 

\ 

Given this definition, consider sensitivity of s and   as c is varied from       to      . Given (13) we have 
 

     
        

       
                                                                                                                                                 (15) 

 

and with (14) we have 
 

     
         

       
                                                                                                                                               (16)  

 



American International Journal of Contemporary Research                                                Vol. 4, No. 6; June 2014 

5 

 

Next, consider the sensitivity of s and   as c is varied from       and      . Given (13) we have 
 

     
        

       
                                                                                                                                                 (17) 

 

and with (14) we have 
 

     
         

       
                                                                                                                                               (18)  

 

From (15, 17) it is clear that for a poorer estimate of s (c = 0.6, 0.1) the parameter s is much more sensitive, in fact  

               is more sensitive than its counterpart (c = 3.0, 2.5). Furthermore, the parameter  , from (16, 

18) is also more sensitive as reflected by                when comparing (16, 18). As noted prior c plays a 

fundamental role in accurate parameter estimation. A fundamental conclusion of this treatment is that it appears 

sensitivity as defined in (13, 14) is a concrete measure by which the analyst may create multiple models, calculate 

the sensitivity, and feel confident as to the ecological parameter estimates. 
 

4. Sensitivity of Parameter Estimates Compared to the Literature 
 

Now compare the results presented in this treatment with those given in the literature (for the presented biomass 

levels in relevant tables). In (McDonald 2013) for a value of the interpolation parameter      , which produced 

estimates of ecological parameters. In that work, it was reported that  
 

  

   
                                                                                                                                                                 (19) 

 

and 
 

   

   
                                                                                                                                                                (20)  

 

A similar process as executed above led to estimates         and        for the biomass levels (as in Tables 

1-5). These are, of course, quite close to the “real” parameter values of       and      . Let us compare these 

values from the literature with the results in Table 5 (                   ), while considering sensitivity. 

This yields 
 

     
          

        
                                                                                                                                           (21)    

 

and 
 

     
         

         
                                                                                                                                              (22) 

 

Now, we compare these values from the literature with the results in Table 5 (                  ), while 

considering sensitivity. This yields 
 

     
         

        
                                                                                                                                               (23)     

 

and 
 

     
         

         
                                                                                                                                               (24)         

 

It is clear from the present treatment given (15-22) that more accurate ecological parameter estimates (for   and  ) 

are less sensitive to changes in the interpolationparameterc as opposed to less accurate estimates. In fact the 

“distance” from       to         is, of course, 1.025 and the “distance” from         to       is 1.375. 

Even though the “distance” between values of c is greater (from         and      , the sensitivity is smaller 

in magnitude. This indicates more accurate parameter estimates.  
 

5. Discussion 
 

The divide between theoretical pursuits and field data observations remains one of the greatest challenges to 

understanding and appropriately managing natural resource systems. Building upon (McDonald 2013) it was 

demonstrated that multiple RSMs may be used to cross-validate models and provide the analyst with the 

mathematical and modeling background to generalize the results to field concerns (estimates of parameters such 

as   and  ).  
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Note that it is significant that a well-known RBF, the cubic, was used in the present analysis. Therefore, we have 

demonstrated that within a single class of RBFs parameter estimation is possible. This work extends that of 

(McDonald 2013) in that multiple models (varying c values) generated by the cubic function were shown to be 

less sensitive to changes in this interpolation parameter as the estimates for s and   became more precise. The 

fundamental message is that the analyst may use this cross-validation strategy via RSMs with differing c values 

with the sensitivity measure to be confident in parameter estimates. Immediate future work will explore the use of 

additional well-known interpolation functions      which are not of cubic form (such as the multiquadric, etc.) 

found in (McDonald et al., 2007). 
 

6. Conclusion 
 

Through the use of response surface models based upon the cubic radial basis function an effort to close the gap 

between strictly theoretical models of predator-prey interactions, and data which presents (in discrete form) has 

been established. It was shown that for the ratio-dependent predator-prey system studied here, discrete data 

provides a suitable basis from which continuous and differentiable models may be constructed. This is a 

fundamental point; discrete data is not in a suitable form, of course, in which analytic gradients and Hessian 

matrix may be produced. Through application of RSM, we are able to evaluate a response surface model, at a 

given level of prey and predator biomass, which may then be leveraged against the existing form of the dynamic 

system model for the purposes of parameter estimation. In addition to a constructive means by which parameters 

may be estimated, it is felt that the notion of sensitivity is unique; if the analyst constructs multiple models that 

produce similar estimates, this treatment suggests that accurate parameter estimates will follow. 
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Table 1: RSM Model Data (c = 0.1) 
 

        

   
 

  

   
 

   

   
  

   

      

 
   

   
  

1.513 2.513 0.67349 0.426 -1.3291 -0.27354 -1.20234 
 

Table 2: RSM Model Data (c = 3.0) 
 

        

   
 

  

   
 

   

   
  

   

      

 
   

   
  

1.513 2.513 0.66186 0.40245 -0.86689 0.54912 -0.3064 
 

Table 3: RSM Model Data (c = 0.6) 
 

        

   
 

  

   
 

   

   
  

   

      

 
   

   
  

1.513 2.513 0.66817 0.40933 -1.094 0.0234 -0.5577 
 

Table 4: RSM Model Data (c = 2.5) 
 

        

   
 

  

   
 

   

   
  

   

      

 
   

   
  

1.513 2.513 0.66185 0.40244 -0.86656 0.5498 -0.3061 
 

 

Table 5: Ecological Parameter Estimates 
 

        
  

   
 

   

   
      

0.1 1.513 2.513 0.426 -1.20234 3.9 3.73 

0.6 1.513 2.513 0.40933 -0.5577 1.81 4.29 

2.5 1.513 2.513 0.40244 -0.3061 1.17 5.05 

3.0 1.513 2.513 0.40245 -0.3064 1.1 4.71 

 

 


